
 

METOKIS - 507164  Deliverable 

  
DELIVERABLE 

  

 
 
 
 

 
 
 
 
 
 
 

Task Taxonomies for Knowledge Content 
D07 

 
 
 
 
 
 
 
 
 
 
 
 
Task Number - Name T31, T21, T22, T23, T24 
Issuing Date ongoing, 2005 
Distribution Public 
Document Web Link  
File name D07_v21.pdf 
Author/Editor Aldo Gangemi, Stefano Borgo, Carola Catenacci, Jos Lehmann 
QA Mentor  
Lead/Contact Person Aldo Gangemi 

 
 
 
 
Change History 
 

Version Status Comments / Changes 
2.1 post-final-3 Update May 30th, 2005: 

- Debugging of reification semantics 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 2 of 140 

2.0 post-final-2 Update May 4th, 2005: 
- Update of reification semantics 
- Corrections on axioms related to agentive notions 
- Some more clarification on inherited DOLCE notions 
- Updated OWL-DL version of DDPO 

1.8 post-final Update February 15th, 2005: 
- Addition of a reification semantics for D&S 
- Updates on FOL formalization 
- Migration of most control tasks to individuals 
- Updates to sample domain models 
- Updated OWL-DL version of DDPO 

1.2 final October 1st, 2004: 
Signed off for delivery to project officer 

1.0  wip July 6th, 2004: 
Intermediate version 

 
 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 3 of 140 

Table of Content 
 

1.1 Definition ............................................................................................................. 5 

1.2 Objective .............................................................................................................. 5 

1.3 Contents ............................................................................................................... 5 

1.3.1 Literature overview ...............................................................................................................................5 

1.3.2 Reusable ontologies ..............................................................................................................................6 

1.3.3 Ontology of plans and tasks...................................................................................................................6 

1.3.4 Sample models......................................................................................................................................6 

1.3.5 Ontology of information objects ............................................................................................................6 

1.3.6 Ontology grounding ..............................................................................................................................6 
1.4 Versioning policy .................................................................................................. 7 

2.1 General Problem Definition ................................................................................... 8 

2.2 Existing Approaches .............................................................................................. 9 

2.2.1 BDI: Belief, Desire, Intention Approach ................................................................................................9 

2.2.2 PSM: Planners Constructed Through Problem Solving Methods ..........................................................10 

2.2.3 The Act Formalism .............................................................................................................................13 

2.2.4 SPAR: Shared Planning and Activity Representation ...........................................................................14 

2.2.5 CPR: Core Plan Representation ...........................................................................................................14 

2.2.6 PSL: Process Specification Language (including PIF: Process Interchange Format)..............................16 

2.2.7 PLANET: a PLAN semantic NET .......................................................................................................17 

2.2.8 EO: Enterprise Ontology .....................................................................................................................19 

2.2.9 OPT: Ontology with Polymorphic Types (including PDDL: Planning Domain Definition Language) ...20 

2.2.10 COS: Core Ontology of Services .......................................................................................................21 

2.2.11 An Ontological Formalization of the Planning Task ...........................................................................22 

2.2.12 DDPO: DOLCE+DnS Plan Ontology ................................................................................................23 

References .................................................................................................................. 25 

3.1 Introduction ........................................................................................................ 27 

3.2 The DOLCE foundational ontology ....................................................................... 28 

3.3 Basic classes and relations of the DnS Ontology..................................................... 29 

3.3.1 Introduction ........................................................................................................................................29 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 4 of 140 

3.3.2 A basic semantics for embedded contexts ............................................................................................30 

3.3.3 A DOLCE-related axiomatization for the basic notions of DnS ............................................................37 

4.1 The KLETT case study ......................................................................................... 67 

4.1.1 Schemas for Concept Design and Concept Development......................................................................70 

4.1.2 Formal Model .....................................................................................................................................74 

4.2 The Templeton Oxford Retail Futures Group case study .......................................... 75 

4.2.1 Schema for Agenda .............................................................................................................................76 

4.2.2 Formal Model .....................................................................................................................................77 

5.1 The basic IO design pattern.................................................................................. 80 

5.2 Advanced paths in the IO pattern .......................................................................... 81 

5.3 Using the IO design pattern.................................................................................. 84 

6.1 OWL-DL abstract syntax of DDPO (complete) ....................................................... 85 

6.2 OWL-RDF abstract syntax of the sample Klett model ............................................ 139 
 

 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 5 of 140 

Executive Summary 
 

1.1 Definition 

This deliverable concerns the logical and ontological foundation of so-called task taxonomies 
for knowledge content. Firstly, we clarify a bit this concern. 
Task taxonomies can be initially defined from a mathematical viewpoint as graphs that 
create an ordering over sets of action types. Task taxonomies are mainly used in so-called 
workflow management systems [12], [13]. 
Knowledge content objects can be initially defined as (materialized) information objects that 
are tagged by means of metadata, and are the target elements of library management and the 
Semantic Web. 
In Metokis, the two concepts match for the scope of the project: building a demonstration 
platform that allows a formal definition of certain types (mainly digital) of knowledge content 
objects (news, clinical data, management documents, etc.), in conjunction with a formal 
definition of the action types (and their ordering) that involve that kind of knowledge content. 
The platform should enhance the manipulation and the management of content, specially 
within organizations, communities, intranets, etc. This objective clearly relates to the ongoing 
efforts for a Semantic Web, and to the semantic foundation of Web Services, but in Metokis 
we do not take such a widespread perspective. 

1.2 Objective 

The objective of this deliverable (across its evolution) is to explain how task taxonomies and 
knowledge content objects can be designed by means of logical languages and reusable 
conceptual models, called formal ontologies. It is also suggested how the models of tasks and 
contents can be grounded into system components. 

1.3 Contents 

This version of the deliverable contains a preliminary review of the related literature, the 
reusable formal ontologies that are used, a first version of the formal ontology of plans and 
tasks, an analysis of an example from the Klett and ORFG use cases, models that partly 
formalizes the examples by applying the ontology of plans, a preliminary ontology of 
information objects, and the machine readable code - the encoding language is OWL-DL - of 
the ontology library. 
Future versions will include a more complete review of the literature, improved versions of 
the ontologies, and extended examples and best practices derived from the use cases. 

1.3.1 Literature overview 
The literature reviewed in this version of the deliverable only covers task-related work. The 
expected coverage includes process and plan ontologies (reviewed in this version), classical 
AI planning, the BDI (Belief-Desire-Intention) paradigm, MAS (Multi-Agent Systems), 
KQML (Knowledge Query and Manipulation Language), and workflow management 
systems. 
Future versions will consider also the literature on content metadata and information objects. 
Literature review is included in the deliverable for positioning the solutions proposed by 
Metokis, but it is not an objective per se. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 6 of 140 

1.3.2 Reusable ontologies 
Ontologies for Metokis will be designed as an ontology library. This choice enables us to 
reuse existing components. In particular, the current library includes the DOLCE foundational 
ontology, some of its extensions for time, space, and information objects, and the DnS 
ontology. An experimental ontology of plans has been substantially reworked within Metokis, 
and it currently constitutes the major contribution of the deliverable. 

1.3.3 Ontology of plans and tasks 
Based on the abovementioned components, an experimental ontology of plans has been 
substantially reworked within Metokis, and it currently constitutes the major contribution of 
the deliverable. 
Tasks are treated as concepts defined within plans, which refer to actions (e.g. “write a 
report”). Control constructs (e.g. “choose between the following alternatives”, or “loop on the 
following”) from traditional planning and workflows are represented as “control tasks”, also 
defined within plans. Ordering of tasks is formalised by using part (mereological) relations, 
control tasks and a successor relation. 
A rich subclass hierarchy of tasks has been developed by deepening these basic assumptions. 
The ontology of plans and tasks aims at reaching an intersubjective agreement among the 
designers as well as the users of task taxonomies. Axioms for the definition of plan types, task 
types, goals, control constructs, etc. are provided, together with axioms for the automatic 
matching of plan executions against plan descriptions. 
On the other hand, the operationalization of plans and tasks is left to appropriate choices 
among available information system components. 

1.3.4 Sample models 
This version includes two sample models representing a task (and role) taxonomy used by 
Klett, and a plan structure for the ORFG Business executives case study used by Templeton 
College, two of Metokis partners. Future versions will include other and extended examples, 
and best practices. 

1.3.5 Ontology of information objects 
Currently, the proposed ontology for information objects is adapted and improved from an 
extension of DOLCE, and is currently used for the KCO (Knowledge Content Objects) 
ontology.  
Part of the reused ontology has been developed within the WonderWeb EU project [15], [17], 
[14], [10]. 
In order to put metadata on content, we need to know what kind of properties those metadata 
are talking about. 
According to the reused ontology, content of any modality is assumed to be equivalent to 
information objects having the following properties: a support, one or more combinatorial 
structure(s), a meaning and a reference. 

1.3.6 Ontology grounding 
Ontologies aim at an explicitation of the intended meaning, but running systems require that 
meaning to be operationalized into operations of a system. Operationalization is implemented 
(usually without the support of an explicit ontology) into workflow management systems and 
planners. 
Within Metokis, the design choice is to have explicit detailed ontologies that are explicitly 
grounded into some information system specification language, e,g, WSDL, IDL, etc. Those 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 7 of 140 

languages can be executed, then grounding results in having operational systems that 
implement requirements coming from ontologies. 
The advantages of having explicit ontologies include: i) logical consistency, ii) conceptual 
transparency, iii) fair matching between user requirements and software design. 

1.4 Versioning policy 

This deliverable will have a versioning policy based on the evolution of the Metokis use cases 
and the synergies with other projects: each version will improve the previous one on these 
dimensions: 
 

i) inclusion of examples of best practices from use cases 
ii) changes in the ontology library, related to the needs from the use cases 
iii) improvement of the literature review and of the state of art, specially from 

synergies with research groups from other projects (e.g. University of Karlsruhe 
from aceMedia, Knowledge Media Institute from DIP) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 8 of 140 

2 Literature Overview  

2.1 General Problem Definition 

Historically and theoretically speaking, Planning is a defining research problem for Artificial 
Intelligence (AI) and related disciplines (chiefly Robotics). For an insider view on this history 
see [1]. 
The 90s have seen a renewed interest in Planning from a Knowledge Representation 
perspective, more specifically from an Ontological perspective. The key assumptions behind 
this recent focus on Planning may be summed up in the following points:  

• Planning is an important benchmark for any new approach to AI.  
• Classical planning paradigms mainly suffer of lack of specificity, which hinders their 

useful application in real-life information systems -- scaling-up -- and, therefore, their 
proper testing. 

• Ontology is a new approach to AI. 
• Ontology may prove itself useful to AI by providing insights and solutions for the issues 

stated in the second point. 
 
The application domains of ontological research in Planning have mainly been military and 
industrial ones, and this may probably be traced back to two reasons: both these domains seek 
strategic innovation by automation – thus making funding available -- and both these domains 
rely on highly structured workflows – thus providing to the proposed approaches a testing 
ground with a reduced complexity, therefore, making validation a little easier. It remains a 
question whether the focus on these types of applications has somehow restricted the 
“exportability” of the proposed approaches. This question may tentatively be answered in the 
negative, as most of the proposals are fairly well grounded in general knowledge models of 
what is a plan, which in turn guarantees a fair degree of applicability of most of the proposals 
in many different domains.  
 
In the section 2.2, an overview is provided of the following Ontological approaches to 
Planning:  

a. the BDI paradigm. 
b. planners constructed through Problem Solving Methods. 
c. the Act Formalism. 
d. the Shared Planning and Activity Representation. 
e. the Core Plan Representation. 
f. the Process Specification Language. 
g. the PLAN semantic NET. 
h. the Enterprise Ontology. 
i. the Ontology with Polymorphic Types.  
j. the Core Ontology of Services. 
k. an Ontological Formalization of the Planning Task. 

 
Other approaches of (indirect) interest to Planning might be added to this review in the future 
(e.g., more Web-Services based approaches or Belief-Desire-Intention based approaches). 
For each newly introduced approach, the following indications are provided:  

1. a source document, 
2. the motivation behind the considered approach, 
3. the most significant part of the knowledge model formalized in the approach, 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 9 of 140 

4. a tentative evaluation of the level of formalization of the approach. It should be 
noticed that, in order to perform the evaluation in a founded way, the level of 
formalization of an ontology should be measured on at least three axes indicating: 
how much of the ontology is implemented in a formal language; what is the 
expressivity of the implementation language of the ontology (ranging, for instance, 
from RDF schemas to higher order logics); how tractable/executable is the 
implemented ontology. At the moment, there are no stable methods for defining and 
combining these axes, though. It would require some significant research effort to 
come up with such a definition. But it is unclear whether this piece of research would 
directly be relevant to Metokis. Therefore, for the moment we only intuitively evaluate 
the level of formalization of a given approach on a (continuous) scale like: low, 
medium, high; where high (roughly) means that the considered ontology has been 
fully implemented, in an expressive and tractable/executable language. 

Moreover, the convention is adopted that any notion defined in any given approach is written 
in CAPITAL letters. 
 
Finally, in order to make it more accessible, all the material is presented in a non-formal 
fashion. The main purpose of this overview is to acquaint the reader with the terminology 
used and the concepts defined in the Ontological literature on Planning. Having a general, yet 
not too generic overview of the problems treated in the literature, may help the reading of 
Section 3, where the proposed Plan Ontology is introduced. The reader should become aware 
of the “minimal” set of notions usually targeted by research on Planning: plan, of course, but 
also activity, task, action, execution, strategy, schedule, service, world-state, state of affairs, 
objective, goal, desire, purpose, commitment, pre-condition, post-condition, constraint, 
resource, agent, role, risk, probability, capability, skill, cost, description, situation and a few 
more… By going through the existing sets of definitions of these, two threads should become 
apparent: 

1. For most languages dedicated to Planning, internal consistency still is the main issue. 
Given the plethora of notions that may be involved in Planning, and given the usual 
computational restrictions, it is more desirable for a language to consistently cover a 
well defined portion of the conceptual space on Planning, rather than to cover it all 
and try to achieve conceptual completeness.  

2. One of the most significant aspects according to which languages for Planning may be 
classified is their suitability for execution vs. representation. Executable languages 
(algebras) are conceptually simpler but also more keen to real-time control. On the 
contrary, rich languages provide conceptual sophistication but usually guarantee less 
control at execution. 

 
Section 2.3 provides a preliminary presentation and positioning of DDPO (DOLCE+DnS Plan 
Ontology), the ontology of plans proposed in section 3. 

2.2 Existing Approaches 

2.2.1 BDI: Belief, Desire, Intention Approach 
Source Document: A. S. Rao and M. P. Georgeff (1995) "BDI Agents: From Theory to 
Practice" 
 
Motivation: The design of agent-based systems for high-level management and control tasks 
in complex dynamic environments. The approach is based on modal logic and attempts a 
different solution to the standard Artificial Intelligence and Decision Theory methods in 
planning since these are not apt for resource- and knowledge-bounded agents. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 10 of 140 

 
Knowledge Model: the BDI approach is based on three operators which are characterized by 
the standard KD45 modal system (but other formalizations have been exploited). The 
operators are: Bel (for belief), Des (for desire), and Int (for intention). These operators are 
related to each other by the notions of goal and commitment. 
 
Level of Formalization: High. 

2.2.2 PSM: Planners Constructed Through Problem Solving Methods 
Source Document: Benjamins, R., Nunes de Barros, L., Valente, A., (1996) 

“Constructing Planners Through Problem-Solving Methods” available on website 
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/benjamins/doc.html. 
 
Motivation: To show how a general, knowledge-level framework for 
conceptually specifying knowledge-based systems, can be of concrete use to 
support knowledge acquisition for planning systems. The framework 
encompasses three interrelated components: (1) problem-solving methods, 
(2) their assumptions and (3) domain knowledge. The presented analysis of 
planning performed in the framework can be considered as a library with 
reusable components, based on which planners can be configured. 
 
Knowledge Model: PSM’s planning ontology is built around the following notions 
(informally grouped in Dynamic Roles, Static Roles and Basic PSMs): 
 
-- Dynamic Roles in Planning 
 

1. CURRENT STATE, a description of the world in the initial state.  
2. GOAL, a description of the changes to the world that must be accomplished by the 

plan. The content of GOAL can be a set of conditions or a set of actions to be 
accomplished. Initially this role points to the original problem goal. During the 
planning process the content of the role is dynamically modified by establishing new 
subgoals and deleting achieved goals.  

3. PLAN, the dynamic knowledge role PLAN is a composite role whose content is 
constantly modified during the planning process until a solution is found. It consists of 
the following:  

a. PLAN-STEPS which are the steps in the plan that correspond to actions in the 
domain.  

b. ORDERING CONSTRAINTS, over the plan-steps, such as that one action 
precedes another. The type of order imposed on the plan-steps in the plan (e.g., 
partial or total) depends on the static ROLE PLAN STRUCTURE (which will 
be described later) employed by the planner.  

c. VARIABLE BINDINGS CONSTRAINTS, which keep track of how variables 
of plan-steps are instantiated with domain knowledge such as objects, 
resources and agents.  

d. AUXILIARY CONSTRAINTS, that represent temporal and truth constraints 
between plan-steps and conditions. Auxiliary constraints are present in the plan 
only as support knowledge for the planning process. When a solution plan is 
found, they are no longer useful, unless the plan is to be reused. An example of 
an auxiliary constraint is a CAUSAL LINK, which is defined by (i) a condition 
in the plan that has to be true (e.g., a goal condition), (ii) a plan-step that needs 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 11 of 140 

this condition to be true, and (iii) another plan-step that makes this condition 
true. Another example of an auxiliary constraint is POINT TRUTH 
CONSTRAINT, which requires that some condition be true before a certain 
plan-step can occur.  

4. CONFLICT, contains the result of checking the plan for inconsistencies with respect 
to its conditions. Whenever a condition is unexpectedly false, a conflict is detected. 
The CONFLICT role can point directly to a plan-step that violates some interval of the 
truth value of a condition, or just point to a set of inconsistent constraints. 

 
-- Static Roles in Planning 
 

5. A PLAN MODEL defines what a plan is and what it is made of. It consists of two 
parts: the WORLD DESCRIPTION and the PLAN DESCRIPTION. Below is a brief 
description of these roles and their sub-roles.  

6. WORLD DESCRIPTION, describes the world about which the planning is done and 
comprises two sub-roles: STATE DESCRIPTION and STATE CHANGES. The 
STATE DESCRIPTION contains the knowledge necessary to represent or describe the 
state of the world The STATE CHANGES role comprehends all the information 
connected to the specification of changes in the state of the world. This is also the 
specification of the elements a plan is composed of (but not how they are composed, 
see PLAN COMPOSITION below). 

7. PLAN DESCRIPTION, describes the structure and features of the plan being 
generated and comprises two sub-roles: PLAN STRUCTURE and the (optional) 
PLAN ASSESSMENT KNOWLEDGE: 

a. PLAN STRUCTURE, this role specifies how the parts of a plan (actions, sub-
plans) are assembled together. It also specifies (indirectly) how the plan is to 
be executed. There are several varieties in the structure of plans that can be 
identified in the literature. They can be described by two main knowledge 
roles: the PLAN COMPOSITION role contains the description of the plan with 
respect to how the state changes are arranged in order to make up a plan. This 
includes, for instance, whether the plan will be a partial or a total ordering of a 
set of state changes, or whether it includes iteration or conditional operators. 
The composition may also be hierarchical: plans are composed of SUB-
PLANS, and so on up to ATOMIC plans, which are normally state changes. 
The STATE CHANGE DATA role contains the plan information besides the 
structure of state changes. For example, important state change data are 
interval constraints for binding the variables involved in the state changes. It is 
also possible to assign different RESOURCES to each state change or sub-plan. 
Two particularly important resources are agents and time.  

b. PLAN ASSESSMENT KNOWLEDGE determines whether a certain plan (or 
sub-plan) is valid (hard assessment knowledge), or whether a plan is better 
than another (soft). Based on this knowledge, a plan can be modified or 
criticized. An example of hard PLAN ASSESSMENT KNOWLEDGE is the 
TRUTH-CRITERION, which is used to find out if a condition is true at some 
point in the plan. 

 
-- Basic Problem-Solving Methods for Planning 
 

8. PROPOSE REFINEMENT This task has the goal of adding new steps or constraints 
to the plan. The input knowledge roles for this task are: WORLD DESCRIPTION, 
PLAN STRUCTURE and PLAN ASSESSMENT KNOWLEDGE. To realize this 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 12 of 140 

task, there is a method called PROPOSE I, which can be decomposed into three sub-
tasks: SELECT GOAL, PROPOSE EXPANSION AND TEST FOR UNACHIEVED 
GOALS. 

a. SELECT GOAL, this task selects a goal from the set of goals to be 
accomplished. The goal can be either a goal state to be achieved or a goal 
action to be accomplished by a number of actions. For select goal, three 
methods can be used. LINEAR SELECT, RANDOM SELECT and SMART 
SELECT. 

b. PROPOSE EXPANSION, this task takes the selected goal, and proposes a way 
to accomplish it using STATE CHANGES. This can be a new plan step, or an 
action decomposition which will be added to the plan at the place of the goal 
action. The propose expansion task can be realized by three alternative 
methods. DECOMPOSITION PROPOSE proposes a goal decomposition, 
which means to propose a more detailed way to accomplish the goal. This 
method is only applied if the goal is a goal action. GOAL-ACHIEVEMENT 
PROPOSE, selects an operator whose effect includes the selected goal, 
constraining the place of the operator in the plan to be necessarily before the 
selected goal. When a new operator is added to the plan, its preconditions are 
added to the set of goals. When there is already a step in the plan that achieves 
the goal, only the ordering constraint is added to the plan. 

c. TEST FOR UNACHIEVED GOALS This task checks the current plan for 
unachieved goals, and records them in the dynamic role GOAL. It also tests 
whether the preconditions (sub-goals) of an operator are already achieved in 
the current state (when the plan composition is total-order). Three methods are 
identified to realize this task: the MTC-BASED GOAL-TEST, the 
CURRENT-STATE GOAL-TEST and the AGENDA-BASED GOAL TEST. 
Planners that exploit causal-links use the simple agenda-based method, 
because they only need to check for the existence of goals not yet processed; 
goals, once achieved, are preserved through the causal links.  

9. CRITIQUE PLAN The critique plan task checks for conflicts and the quality of the 
plan generated so far, using plan assessment knowledge. The role PLAN 
ASSESSMENT KNOWLEDGE can point to `hard' constraints (interaction and the 
satisfiability of the plan constraints) and `soft' constraints (the factors that define when 
a given plan is better than another. One method is defined to realize this task which is 
called CRITIQUE I. This method consists of two subtasks: consistency critique and 
interaction critique.  

a. INTERACTION CRITIQUE When checking for conflicts, this task verifies 
whether the proposed action for accomplishing the goal would interact with 
other goals in the plan (e.g., one action might undo the precondition of another 
action). Note that this task involves explicit reasoning about interactions. For 
realizing the interaction critique task, two methods are identified: (i) the 
CAUSAL-LINK-BASED CRITIQUE, which checks if the proposed plan-step 
threats any existent causal link; (ii) and the MTC-BASED CRITIQUE, which 
uses the modal truth criterion to check the existence of a step that possibly 
deletes any achieved goal.  

b. CONSISTENCY CRITIQUE This task checks the consistency of the overall 
constraints on the plan generated so far. This task differs from the interaction 
critique in the sense that it can find more general conflicts between the 
constraints than the deleted-condition conflict. More complex planning 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 13 of 140 

systems can also check the consistency of the assigned resources and agents. 
The CONSTRAINT PROPAGATION method is defined to realize this task.  

10. MODIFY PLAN,The modify plan task is responsible for modifying the plan with 
respect to the results of the critique plan task (a conflict). By using plan assessment 
knowledge, a modification can be done by adding ordering, binding or secondary 
preconditions to the plan until the possible conflict (violation) is solved or avoided. 
Three methods are defined to realize this task:  

a. the CAUSAL-LINK-BASED 
b. the MTC-BASED method for partial-ordered plans, and  
c. the BACKTRACK MODIFICATION method for total-order plans.  

 
Level of Formalization: Medium. 

2.2.3 The Act Formalism 
Source Document: Myers, K.L., Wilkins, D.E., (1997) “The Act Formalism Version 2.2” 
available on website http://www.ai.sri.com/~act/act-spec.pdf.  
 
Motivation: Many domains in which AI planning techniques can be profitably employed are 
dynamic in nature. For example, military operations planning and controlling a mobile robot 
both exhibit this characteristic: during either plan generation or plan execution, the state of the 
world can change dramatically as troops are dispatched to an area or a robot navigates through 
a hallway. For such domains, it is necessary that plan generation systems be sensitive to run-
time concerns and that plan execution systems be capable of invoking the plan generator to 
address unexpected events at run-time. 
 
Knowledge Model: The basic unit of organization in the Act formalism is an ACT, which is 
further decomposed in the following main elements: 

1. GOAL EXPRESSIONS. 
2. ACT METAPREDICATES, such as ACHIEVE, ACHIEVE-BY, ACHIEVE-ALL, 

WAIT-UNTIL, TEST, CONCLUDE, RETRACT, REQUIRE-UNTIL, USE-
RESOURCE. 

3. ENVIRONMENT CONDITIONS, such as CUE, PRECONDITION, SETTING, 
RESOURCE,  

4. PROPERTIES. 
5. PLOTS. 
6. TEMPORAL REASONING. 
7. VARIABLES. 

 
Roughly speaking, the Act formalism binds the terms listed above by seeing each ACT as 
describing a set of actions that can be taken to fulfill some designated purpose under certain 
conditions. The purpose could be either to satisfy a GOAL or to respond to some event in the 
world. An ACT can represent, among other things, a procedure, a planning “operator” or a 
plan at one particular level of detail. The purpose and applicability criteria for an ACT are 
formulated using a fixed set of ENVIRONMENT CONDITIONS. Action specifications are 
called the PLOT, and consist of a partially ordered set of actions and subgoals. The 
ENVIRONMENT CONDITIONS and PLOTS are specified using GOAL EXPRESSIONS, 
each of which consists of one of a predefined set of METAPREDICATES applied to a logical 
formula. The METAPREDICATES permit the specification of many different modes of 
activity, including goals of achievement, maintenance, and testing. 
 
Level of Formalization: Medium/High. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 14 of 140 

2.2.4 SPAR: Shared Planning and Activity Representation 
 
Source Document: Tate, A. (1998) “Roots of SPAR - Shared Planning and Activity 
Representation”, The Knowledge Engineering Review, Vol. 13(1), pp. 121-128, Special Issue 
on "Putting Ontologies to Use" (eds. Uschold, M. and Tate, A.), Cambridge University Press.  
 
Motivation: The Shared Planning and Activity Representation (SPAR) is intended to 
contribute to a range of purposes including domain modelling, plan generation, plan analysis, 
plan case capture, plan communication, behaviour modelling. By having a shared model of 
what constitutes a plan, process or activity, organisational knowledge can be harnessed and 
used effectively. 
 
Knowledge Model: SPAR’s top level is built around the following notions and statements: 
 

1. A PLAN is a SPECIFICATION of ACTIVITY to meet one or more OBJECTIVES.  
2. A SPECIFICATION of ACTIVITY denotes or describes one or more ACTIVITIES.  
3. An ACTIVITY may change the STATES-OF-AFFAIRS.  
4. STATES-OF-AFFAIRS is something that can be evaluated as holding or not.  
5. An AGENT can perform ACTIVITIES and/or hold OBJECTIVES.  
6. An OBJECTIVE may have one or more EVALUATION-CRITERIA.  
7. An EVALUATION-CRITERION is an ASPECT of STATES-OF-AFFAIRS or an 

ASPECT of  PLANS.  
8. An EVALUATION is a predicate (holds/does not hold) or a preference ranking on 

EVALUATION-CRITERIA.  
9. An ACTIVITY takes place over a TIME-INTERVAL identified by its two ends, the 

BEGIN-TIME-POINT and the END-TIME-POINT. The BEGIN-TIME-POINT is 
temporally before the END-TIME-POINT.  

10. An ACTIVITY-SPECIFICATION may have CONSTRAINTS associated with it.  
11. An ACTIVITY-SPECIFICATION may be decomposed into one or more ACTIVITY-

DECOMPOSITIONS.  
12. An ACTIVITY-DECOMPOSITION is the specification of how an ACTIVITY is 

decomposed into one or more SUB-ACTIVITIES; this may include the specification 
of constraints on and between the SUB-ACTIVITIES. 

13. A SUB-ACTIVITY is the constituent activity designated in any ACTIVITY-
DECOMPOSITION.  

14. A PRIMITIVE-ACTIVITY is an ACTIVITY with no (further) ACTIVITY-
DECOMPOSITION.  

15. CONSTRAINTS can be stated with respect to none, one or more than one time point. 
They express things which are required to hold. They are evaluable with respect to a 
specific PLAN as holding or not holding. Such constraints may refer to world 
statements (conditions and effects), resource requirements and usage, authority 
requirements or provision, etc.  

 
Level of Formalization: Low. 

2.2.5 CPR: Core Plan Representation 
Source Documents: Pease, A. (1998) “The Warplan: A Method Independent Plan Schema” 
available on website  home.earthlink.net/~adampease/professional/AIPS98.ps; a more 
detailed version on http://reliant.teknowledge.com/CPR2/Reports/CPR-
RFC4/Design.html#_Toc435005571.  



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 15 of 140 

 
Motivation: The design of CPR is an attempt to unify the major concepts and advancements 
in plan and process representation into one comprehensive model. There are two significant 
payoffs to the CPR effort. The first is that creation of a base plan representation will facilitate 
information interchange among different planning systems. Imagine a typical military 
planning situation. A crisis develops and a joint task force is formed. The leadership and staff 
use a planning application to develop guidance for their subordinate commands. This 
guidance includes background on the situation, objectives which must be met to contain the 
crisis, constraints on the actions of the task force and high level specification of the name. The 
second payoff is in the creation of common services based on the CPR. There are two broad 
areas of services with immediate utility: visualization, scheduling. 
 
Knowledge Model: CPR’s top level may be expressed by a number of English sentences that 
describe it in the same format as the SPAR model. 

1. A PLAN relates ACTION(s) to OBJECTIVE(s). 
2. The execution of an ACTION may change the WORLD-STATE.  
3. An ACTOR is a PLAN-OBJECT that can perform activities and/or hold objectives.  
4. An ACTION takes place over a time interval identified by its two ends, the BEGIN 

time and the END time.  
5. An ACTION is an EVENT that has or could have (in the domain model) an ACTOR.  
6. An ACTOR is a ROLE that an ENTITY can play when it is the motive force behind 

an ACTION.  
7. A RESOURCE is a PLAN-OBJECT that is used, modified, consumed or destroyed 

during the execution of an ACTION. RESOURCE is a ROLE that an ENTITY can 
play.  

8. A PRODUCT is a PLAN-OBJECT that is created during the execution of an 
ACTION. PRODUCT is a ROLE that an ENTITY can play.  

9. A WORLD-MODEL provides a model of dynamics that allows WORLD-STATEs to 
be predicted as the result of some ACTIONs.  

10. A WORLD-STATE describes a snapshot of the world which is actual, expected, or 
hypothetical.  

11. Each PROPERTY of each ENTITY may have a VALUE, i.e. 
PROPERTY(ENTITY)=VALUE.  

12. VALUEs may be imprecise.  
13. VALUEs may have a PROBABILITY.  
14. PROBABILITYs may be partitioned into PROBABILITY-PREDICTION and 

PROBABILITY-SENSED.  
15. A PROBABILITY-PREDICTION is the likelihood of a WORLD-STATE-

DESCRIPTION being valid in the future.  
16. A PROBABILITY-SENSED is a likelihood that a WORLD-STATE-DESCRIPTION 

did in fact have the specified value in the past or at the current time.  
17. An INFLUENCE-NETWORK is a structure which relates PROBABILITYs and 

specifies their dependency structure.  
18. The EFFECTS-RECORD of an ACTION is the record of changes made to the 

WORLD-STATE by execution of the ACTION.  
19. An OBJECTIVE may have one or more EVALUATION-CRITERIA.  
20. An EVALUATION-CRITERION may be applied to a WORLD-STATE to create an 

EVALUATION.  
21. An EVALUATION may be a predicate (holds/does not hold) or a partial order on the 

results of EVALUATION-CRITERIA . 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 16 of 140 

22. A PLAN-LIBRARY contains PLANs or portions of PLANs that may be reused in 
creating new PLANs. A PLAN-LIBRARY has one or more INDEXes which can be 
used to catalog PLANs and aid in searching for them. 

 
Level of Formalization: Low/Medium. 

2.2.6 PSL: Process Specification Language (including PIF: Process Interchange 
Format) 

Source Document: Schlenoff, C., Gruninger, M., Ciocoiu, M., Lee, J., (1999) “The Essence 
of the Process Specification Language”. Special Issue on Modeling and Simulation of 
Manufacturing Systems in the Transactions of the Society for Computer Simulation 
International, available on website http://www.mel.nist.gov/msidlibrary/doc/essence.pdf. 
 
Motivation: The Process Specification Language (PSL) project at the National Institute of 
Standards and Technology (NIST) addresses Planning by creating a neutral, standard 
language for process specification to serve as an interlingua to integrate multiple process 
related applications throughout the manufacturing life cycle. This interchange language is 
unique due to the formal semantic definitions (the ontology) that underlie the language. 
Because of these explicit and unambiguous definitions, information exchange can be achieved 
without relying on hidden assumptions or subjective mappings. The scope of study is limited 
to the realm of discrete processes related to manufacturing, including all processes in the 
design/manufacturing life cycle. Business processes and manufacturing engineering processes 
are included in this work both to ascertain common aspects for process specification and to 
acknowledge the current and future integration of business and engineering functions.  
 
Knowledge Model: PSL’s top level is built around the following notions: 

1. ACTIVITY, a class or type of action. For example, ‘paint-part’ is an activity. It is the 
class of actions in which parts are being painted. 

2. ACTIVITY-OCCURRENCE, an event or action that takes place at a specific place 
and time. An instance or occurrence of an activity. E.g., paint-part is an activity, 
painting in Maryland at 2 PM on May 25, 1998 is an activity-occurrence. 

3. TIMEPOINT, A point in time. 
4. OBJECT, anything that is not a timepoint or an activity. 
 

--The following definitions and axioms provide the ontological structure underlying to the four basic entities of 
PSL: 
 

5. Definition 1. Timepoint q is between timepoints p and r if and only if p is before q and 
q is before r. 

6. Definition 2. Timepoint p is beforeEq timepoint q if and only if p is before or equal to 
q. 

7. Definition 3. Timepoint q is betweenEq timepoints p and r if and only if p is before or equal to q, and q 
is before or equal to r. 

8. Definition 4. An object exists-at a timepoint p if and only if p is betweenEq its begin 
and end points. 

9. Definition 5. An activity occurrence is-occurring-at a timepoint p if and only if p is 
betweenEq the activity occurrence’s begin and end points. 

10. Axiom 1. The before relation only holds between timepoints. 
11. Axiom 2. The before relation is a total ordering. 
12. Axiom 3. The before relation is non-reflexive. 
13. Axiom 4. The before relation is transitive. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 17 of 140 

14. Axiom 5. Inf- is before every other timepoint. 
15. Axiom 6. Every timepoint else than inf+ is before inf+ 
16. Axiom 7. Given any timepoint t other than inf-, there is a timepoint between inf- and t. 
17. Axiom 8. Given any timepoint t other than inf+, there is a timepoint between t and 

inf+. 
18. Axiom 9. Everything is either an activity, an activity-occurrence, an object, or a 

timepoint. 
19. Axiom 10. Activities, activity-occurrences, objects, and timepoints are all distinct 

kinds of things. 
20. Axiom 11. The occurrence-of relation only holds between activities and activity-

occurrences. 
21. Axiom 12. An activity-occurrence is the occurrence-of a single activity. 
22. Axiom 13. The begin and end of an activity-occurrence or object are timepoints. 
23. Axiom 14. The timepoint at which an activity-occurrence b egins always precedes the 

timepoint at which the activity-occurrence ends. 
24. Axiom 15. The participates-in relation only holds between objects, activities, and 

timepoints, respectively. 
25. Axiom 16. An object can participate in an activity only at those timepoints at which 

both the object exists and the activity is occurring. 
 
Level of Formalization: High. 

2.2.7 PLANET: a PLAN semantic NET 
Source Document: Gil, Y., and Blythe, J., (2000) “PLANET: A Shareable and Reusable 
Ontology for Representing Plans”. In AAAI 2000 workshop on Representational Issues for 
Real-world Planning Systems, available on website http://www.isi.edu/expect/papers/gil-
blythe-aaai00-2.pdf.  
 
Motivation: Enhance knowledge modeling, reuse, integration and sharing. As for other 
ontologies of planning, PLANET was initially developed for and applied in the defense 
sector. 
 
Knowledge Model: PLANET’s top level is built around the following notions: 

1. A PLANNING PROBLEM CONTEXT represents the initial, given assumptions about 
the planning problem. It describes the background scenario in which plans are 
designed and must operate on. This context includes the initial state, desired goals, and 
the external constraints. 

2. A WORLD STATE is a model of the environment for which the plan is intended. A 
certain world state description can be chosen as the INITIAL STATE of a given 
planning problem, and all plans that are solutions of this planning problem must 
assume this initial state. 

3. The DESIRED GOALS express what is to be accomplished in the process of solving 
the planning problem. Sometimes the initial planning context may not directly specify 
the goals to be achieved, instead these are deduced from some initial information 
about the situation and some abstract guidance provided as constraints on the problem. 

4. EXTERNAL CONSTRAINTS may be specified as part of the planning context to 
express desirable or undesirable properties or effects of potential solutions to the 
problem, including user advice and preferences. Examples of external constraints are 
that the plan accomplishes a mission in a period of seven days, that the plan does not 
use a certain type of resource, or that transportation is preferably done in tracked 
vehicles. Commitments are discussed later. The initial requirements expressed in the 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 18 of 140 

planning problem context need not all be consistent and achievable (for example, 
initial external constraints and goals may be incompatible), rather its aim is to 
represent these requirements as given. A plan may satisfy or not satisfy external 
constraints.  

5. A PLANNING PROBLEM is created by forming specific goals, constraints and 
assumptions about the initial state. Several plans can be created as alternative 
solutions for a given planning problem. A planning problem also includes information 
used to compare alternative candidate plans. Planning problems can have descendant 
planning problems, which impose (or relax) different constraints on the original 
problem or may assume variations of the initial state. 

6. A planning problem may have a number of CANDIDATE PLANS which are potential 
solutions. A candidate plan can be untried (i.e., it is yet to be explored or tested), 
rejected (i.e., for some reason it has been rejected as the preferred plan) or feasible 
(i.e., tried and not rejected). One or more feasible plans may be marked as selected. 
All of these are sub-relations of candidate plan. 

7. A GOAL SPECIFICATION represents anything that gets accomplished by a plan, 
subplan or task. Both capabilities and effects of actions and tasks are subtypes of goal 
specification, as well as posted goals and objectives. Goals may be variabilized or 
instantiated.  

8. STATE-BASED GOAL SPECIFICATIONS are goal specifications that typically 
represent goals that refer to some predicate used to describe the state of the World, for 
example ‘achieve (at JimLAX)’, ‘deny (atRed-BrigadeSouth-Pass)’ or ‘maintain 
(temperature Room5 30)’. 

9. OBJECTIVE BASED GOAL SPECIFICATIONS are goal specifications that are 
typically stated as verb- or action-based expressions, such as ‘transport brigade5 to 
Ryad’. 

10. Goal specifications also include a HUMAN READABLE DESCRIPTION used to 
provide a description of a goal to an end user. This is useful because often times users 
want to view information in a format that is different from the internal format used to 
store it. This could be a simple string or a more complex structure. 

11. PLAN TASK DESCRIPTIONS are the actions that can be taken in the world state. 
They include templates and their instantiations, and can be abstract or specific. A plan 
task description models one or more ACTIONS in the external world. 

12. A PLAN TASK is a subclass of PLAN task description and represents an instantiation 
of a task as it appears in a plan. It can be a partial or full instantiation.  

13. A PLAN TASK TEMPLATE is also a subclass of PLAN TASK DESCRIPTION that 
denotes an action or set of actions that can be performed in the world state. In some AI 
planners the two classes correspond to operator instances and operator schemas 
respectively, and in others they are called tasks and task decomposition patterns. Plan 
task descriptions have a set of preconditions, a set of effects, a capability, and can be 
decomposed into a set of subtasks. Not all these properties need to be specified for a 
given task description, and typically planners represent tasks differently depending on 
their approach to reasoning about action.  

14. The CAPABILITY of a task or task template describes a goal for which the task can 
be used. 

15. A PRECONDITION represents a necessary condition for the task. If the task is 
executed, its EFFECTS take place in the given world state. Tasks can be decomposed 
into SUBTASKS that are themselves task descriptions. Hierarchical task network 
planners use task decomposition or operator templates (represented here as plan task 
templates) and instantiate them to generate a plan. Each template includes a statement 
of the kind of goal it can achieve (represented as a capability), a decomposition 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 19 of 140 

network into subtasks, each subtask is matched against the task templates down to 
primitive templates, represented as primitive plan task descriptions. Like goal 
specifications, plan task descriptions also include a human readable description. Some 
AI planners specify this information as a set of parameters of the task that are used to 
determine which subset of arguments will be printed when the plan is displayed. 

16. PLANNING LEVELS can be associated to task descriptions as well as to goal 
specifications. Levels are also used in real-world domains, for example military plans 
are often described in different levels according to the command structure, echelons, 
or nature of the tasks. 

17. A PLAN represents a set of commitments to actions taken by an agent in order to 
achieve some specified goals. It can be useful to state that a plan forms a sub-plan of 
another one. For example, military plans often include subplans that represent the 
movement of assets to the area of operations (i.e., logistics tasks), and subplans that 
group the operations themselves (i.e., force application tasks). 

18. PLAN COMMITMENTS are commitments on the plan as a whole, and may be in the 
form of actions at variously detailed levels of specification, orderings among actions 
and other requirements on a plan such as a cost profile. The tasks that will form part of 
the plan are represented as a subset of the commitments made by the plan.  

19. TASK COMMITMENTS are commitments that affect individual tasks or pairs of 
tasks. An ordering commitment is a relation between tasks such as (before A B). A 
temporal commitment is a commitment on a task with respect to time, such as (before 
?task ?time-stamp). Another kind of commitment is the selection of a plan task 
description because it accomplishes a goal specification. This relation records the 
intent of the planning agent for the task, and is used in PLANET to represent causal 
links. 

 
Level of Formalization: Medium 

2.2.8 EO: Enterprise Ontology 
Source Document: The Enteprise Ontology, available on website  
http://www.aiai.ed.ac.uk/project/enterprise/enterprise/ontology.html  
 
Motivation: The Enterprise Ontology is a collection of terms and definitions relevant to business enterprises. 
The ontology was developed in the Enterprise Project by the Artificial Intelligence Applications Institute at the 
University of Edinburgh with its partners: IBM, Lloyd's Register, Logica UK Limited, and Unilever. The project 
was support by the UK's Department of Trade and Industry under the Intelligent Systems Integration 
Programme(project no IED4/1/8032). 

 
Knowledge Model: The following is a complete list of the terms defined in the Enterprise 
Ontology. We do not provide the definitional structure here, a selection of which might later 
be added if applicable to Metokis. 
 

1. ACTIVITY: ACTIVITY SPECIFICATION, EXECUTE, EXECUTED ACTIVITY 
SPECIFICATION, T-BEGIN, T-END, PRE-CONDITIONS, EFFECT, DOER, SUB-
ACTIVITY, AUTHORITY, ACTIVITY OWNER, EVENT, PLAN, SUB-PLAN, 
PLANNING, PROCESS SPECIFICATION, CAPABILITY, SKILL, RESOURCE, 
RESOURCE ALLOCATION, RESOURCE SUBSTITUTE.  

2. ORGANISATION: PERSON, MACHINE, CORPORATION, PARTNERSHIP, 
PARTNER, LEGAL ENTITY, ORGANISATIONAL UNIT, MANAGE, 
DELEGATE, MANAGEMENT LINK, LEGAL OWNERSHIP, NON-LEGAL 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 20 of 140 

OWNERSHIP, OWNERSHIP, OWNER, ASSET, STAKEHOLDER, 
EMPLOYMENT CONTRACT, SHARE, SHARE HOLDER.  

3. STRATEGY: PURPOSE, HOLD PURPOSE, INTENDED PURPOSE, STRATEGIC 
PURPOSE, OBJECTIVE, VISION, MISSION, GOAL, HELP ACHIEVE, 
STRATEGY, STRATEGIC PLANNING, STRATEGIC ACTION, DECISION, 
ASSUMPTION, CRITICAL ASSUMPTION, NON-CRITICAL ASSUMPTION, 
INFLUENCE FACTOR, CRITICAL INFLUENCE FACTOR, NON-CRITICAL 
INFLUENCE FACTOR, CRITICAL SUCCESS FACTOR, RISK.  

4. MARKETING: SALE, POTENTIAL SALE, FOR SALE, SALE OFFER, VENDOR, 
ACTUAL CUSTOMER, POTENTIAL CUSTOMER, CUSTOMER, RESELLER, 
PRODUCT, ASKING PRICE, SALE PRICE, MARKET, SEGMENTATION 
VARIABLE, MARKET SEGMENT, MARKET RESEARCH, BRAND IMAGE, 
FEATURE, NEED, MARKET NEED, PROMOTION, COMPETITOR.  

5. TIME: TIME LINE, TIME INTERVAL, TIME POINT. 
 
Level of Formalization: Low/Medium. 

2.2.9 OPT: Ontology with Polymorphic Types (including PDDL: Planning Domain 
Definition Language) 

Source Document: McDermott (2003) “OPT Manual Version 1.6 *Draft**” available on 
website  
http://cs-www.cs.yale.edu/homes/dvm/papers/opt-manual.pdf.  
 
Motivation: OPT is an attempt to create a general-purpose notation for creating ontologies, defined as 
formalized conceptual frameworks for domains about which programs are to reason. Its syntax is 
based on PDDL, but it has a more elaborate type system, which allows users to make use of higher-
order constructs such as explicit lambda-expressions. OPT is intended to be (almost) upwardly 
compatible with PDDL 2.1, the dialect used in the 2002 International Planning Competition. 
 
Knowledge Model: OPT includes the following essential built-in types: 

1. ACTION, skip-action or a Hop-action. 
2. BOOLEAN, true or false. 
3. (CON c1 ...ck), the type consisting of just the constants (literals) c1 to ck. 
4. FLOAT, floating-point number. 
5. (FLUENT y), (Fun y <- Situation). 
6. (FUN r <- a), Function from type a to type r. 
7. (HOP r) :action-expansions The type of an action that might take anywhere from zero 

time to a long time interval, producing a value of type r. 
8. HOP-ACTION :action-expansions, an action of type (Hop r) for some r. 
9. OBJ, the universal type; every object is of this type. 
10. PROCESS, an entity of type (Slide r) for some r. 
11. (SKIP r), the type of an action that takes exactly one infinitesimally long time interval 

and returns a value of type r. 
12. SKIP-ACTION, an action of type (Skip r) for some r. 
13. SITUATION, a world state. 
14. STRING, string of characters. 
15. SYMBOL, a Lisp-style symbol. 
16. VOID, the empty type. 

 
Level of Formalization: High. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 21 of 140 

2.2.10 COS: Core Ontology of Services 
Source Document: Oberle, D., Mika , P., Gangemi, A., Sabou, M. (2004) “Foundations for 
service ontologies: Aligning OWL-S to DOLCE” in Staab, S., and Patel-Schneider, P., (eds.), 
Proceedings of the World Wide Web Conference (WWW2004), Semantic Web Track. 
 
Motivation: The descriptions of services show a clear contextual nature. One may only have 
to consider the number of different views that may exist on a service. The concepts used to 
formulate any given view are clearly separate from the actual objects they act upon and often 
independent from the concepts appearing in other views. In order to account for this 
independence COS is defined by reference to DOLCE and its basic extensions, i.e. D & S, 
Ontology of Plans. 
 
Knowledge Model: COS considers five frequently occurring descriptions of a service, where 
each represents a separate viewpoint:  

1. (SERVICE) OFFERING. 
2. REQUEST. 
3. AGREEMENT. 
4. ASSESSMENT, 
5.  NORMS.  

More views may be added in the future when needs arise. All service views are 
specializations of S-DESCRIPTION defined in the Descriptions & Situations ontology. 
Furthermore the following specializations of the notion COURSE OF EVENT are considered:  

6. TASK.  
7. SERVICE TASK.  
8. COMPUTATIONAL TASK.  

This allows to model activities in an information system and in the real world. Axioms ensure 
that SERVICE TASKS only sequence SERVICE ACTIVITIES and that COMPUTATIONAL 
TASKS only sequence COMPUTATIONAL ACTIVITIES. The activities are new kinds of 
PERDURANTS especially introduced here. Further axioms also ensure that only 
INFORMATION OBJECTS (a newly introduced NON-PHYSICAL ENDURANT) 
participate in COMPUTATIONAL ACTIVITIES.  
The Core Ontology of Services may optionally take advantage of a number of concepts from 
the Ontology of Plans which is another module for DOLCE+. It allows the division of tasks 
into elementary and complex and the construction of complex tasks from elementary ones 
among other features. 
The Core Ontology of Services also models frequently occurring FUNCTIONAL ROLES:  

9. REQUESTOR PROVIDER of a service are conceived as LEGALLY 
CONSTRUCTED PERSONS, an agentive legal role in DOLCE. 

10. EXECUTOR of a service is considered an agentive functional role without a legal 
nature.  

11. (COMPUTATIONAL) INPUTS and OUTPUTS, formalized as instrumentality roles. 
The comprehensive axiomatization requires that, e.g., a COMPUTATIONAL INPUT 
is only played by an INFORMATION OBJECT. 

12. VALUE OBJECTS, as a subtype of the generic DOLCE+ commerce role. Such a role 
distinguishes generic Inputs/Outputs from ones to which a value is attributed. The 
latter is usually done by the actor whose viewpoint is being modelled.  

 
Level of Formalization: Medium/High. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 22 of 140 

2.2.11 An Ontological Formalization of the Planning Task 
Source Document: Rajpathak, D., Motta, E. (2004) “An Ontological Formalization of the 
Planning Task” Accepted at FOIS-2004.  
 
Motivation: To provide an ontology that formalizes the nature of the planning task 
independently of any planning paradigm, specific domains, or applications while being a fine-
grained, precise and comprehensive characterization of the space of planning problems. In 
addition, to produce a formal specification that operationalizes the ontology into a set of 
executable definitions, which provide a concrete reusable resource for knowledge acquisition 
and system development in planning applications. 
 
Knowledge Model:  
 

1. INITIAL-WORLD-STATE, S0. It describes the state of the world at the beginning of 
the planning process. 

2. GOAL, G. It describes the desired state of the world we would like to achieve through 
a planning process. 

3. PLAN-TASKS, PT = {pt1, …., ptn}. A set of plan-tasks, which specify intermediate 
goals which need to be accomplished to achieve the overall goal of the planning task. 

4. ACTIONS. For each plan-task, pti, there is a finite set of actions, Ai = {ai1, …., aik}, 
which must be executed to accomplish pti. 

5. AGENTS, AG = {ag1, …., agm}. A set of agents, which are responsible for achieving 
plantasks through the execution of actions. 

6. PARAMETERS, PA = {pa1, …., pal}. Parameters can be seen as meta-level pointers 
to the domain entities which are relevant to the planning process. 

7. TIME-HORIZON, TH. A time window within which the plan is required to take 
place. 

8. CONSTRAINTS, C = {c1, ...., cj}. A set of constraints, which must not be violated by 
a plan. Typical constraints observed in planning are variable binding, ordering 
relation, and interval preservation. 

9. PREFERENCES, PR = {pr1, …., pro}. A set of criteria for partially ranking 
competing plans. These are important to support the acquisition and modeling of local 
optimization criteria during the knowledge acquisition process and indeed they can in 
practice be mutually unsatisfiable. Preferences are typically called soft constraints in 
many approaches to design and planning, however they are ontologically very 
different from constraints and therefore we prefer not to use the term “soft constraint”. 

10. COST-FUNCTION, Cf. A function, which provides a global mechanism for 
comparing the costs of alternative plans. 

11. SOLUTION CRITERION, SOL. A mapping from a plan P to {True False}, which 
determines whether a candidate plan is a solution. A solution criterion usually requires 
P to be complete and valid - see the following section for the description of these 
properties. 

12. PLAN-MODEL, P = {p1, …., pq}. A candidate plan is a sequence of pairs, <pti, agj>, 
where pti is a plan-task and agj is an agent able to execute the relevant actions 
associated with pti. 

 
Level of Formalization: High. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 23 of 140 

2.2.12 DDPO: DOLCE+DnS Plan Ontology 
DOLCE+DnS Plan Ontology (DDPO) specializes the concepts and relations defined in 
DOLCE, and some of its extensions, notably the Ontology of Descriptions and Situations 
(DnS). DDPO, like DnS, has a very liberal domain, which includes physical and non-physical 
objects (social entities, mental objects and states, conceptualizations, information objects, 
constraints), events, states, regions, qualities, and even constructivist situations. The main 
target of DDPO are so-called tasks, namely the types of actions, their sequencing, and the 
controls performed on them. In order to accept tasks in the domain - as clearly distinguished 
from actions and states – control operators of classical planning and process models are 
considered types of planning or decision actions, i.e. rational actions, distinguished from 
purely executive actions. Other typical procedural notions like precondition, postcondition, 
preference, etc. have a corresponding treatment in DDPO. 
As done in section 2.2 for existing approaches, in this section we provide a preliminary 
description of the ontology of plans presented in section 3 by indicating: source documents, 
the motivation behind the considered approach, the most significant part of the knowledge 
model formalized in the approach, a tentative evaluation of the level of formalization of the 
approach. The convention here is that a newly introduced notion is written in bold. 
 
Source Documents: Besides this deliverable, [10], and [13]. 
 
Motivation: The intended use of DDPO is to specify plans at an abstract level and 
independently from existing resources. Its rich set of primitives would require a complex 
algebra to be implemented as a calculus, but the aim is not to make a plan calculus. On the 
contrary, DDPO should be implemented, through appropriate tools, as a framework to define 
detailed or approximate plans from any perspective. The resulting plans could be grounded in 
systems that implement a set of functionalities and reason according to the specifications 
given in DDPO-based plans. 
 
Knowledge Model:  

1. A description is a non-agentive social object. 
2. A situation is a setting for any number of entities. 
3. The (external) time and space of a situation are the time and space of the entities in 

the setting. 
4. A concept is a non-physical object, which is “defined by” a description. 
5. The classifies relation relates concepts and entities. 
6. There are several kinds of concepts reified, the primary ones (role, course, and 

parameter) being distinguished by the entity types they classify in DOLCE. 
7. Figures are concepts that do not classify entities. 
8. The component relation is a proper part qualified by a description in which the proper 

parts are involved. 
9. Uses is a subrelation of Component (there is an inherent cycle between the component 

and uses relations, but it seems unavoidable: functional part requires a description, 
which is an object with functional parts, etc.). 

10. Defines is a subrelation of Uses. 
11. Roles or figures and courses are related by relations expressing the attitudes that 

(players of) roles or (representatives of) figures can have towards a course. 
12. Parameters and roles, figures, or courses are related by a requisite for relation, 

expressing the kind of requisites entities that are classified by roles or courses should 
have: 

13. The satisfaction (SAT) relation holds between situations and descriptions, and implies 
that at least some components in a description must classify at least some entity in the 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 24 of 140 

situation setting. There exist a basic typology for the satisfaction relation between 
situations and descriptions: P-Satisfies means proactively satisfies, R-Satisfies means 
retroactively satisfies, and C-Satisfies means constructively satisfies. 

14. A plan is a description that defines or uses at least one task and one agentive role or 
figure, and that has at least one goal as a part. 

15. A goal is a desire (another kind of description) that is a part of a plan.  
16. Desires are characterized by defining or using at least one agentive role or figure, and 

at least one course towards which the (player or representative of) role or figure has a 
desire: 

17. A main goal is a goal that is part of a plan but not of one of its subplans. 
18. Plan executions are situations that proactively satisfy a plan. 
19. A goal situation is a situation that satisfies a goal. 
20. A precondition for a plan can be defined as a relation between a situation and a plan, 

implying that, for all plan executions of that plan to occur, a situation should 
preliminarily satisfy some description as well. 

21. A postcondition for a plan is a relation between a situation and a plan, implying that, 
after plan executions of that plan occur, a situation should satisfy some description as 
well. 

22. An accompanying condition (sometimes called ‘constraint’ in the planning literature) 
for a plan can be defined as a relation between a situation and a task, implying that, for 
all plan executions of that plan to occur, a situation should satisfy some description as 
well, at the time of some specified perdurant that is sequenced by a task defined in the 
plan. 

23. A circumstantial or saturated plan is a plan that cannot be executed twice, since it 
defines a temporal parameter restricted to one value, e.g. one of its tasks classifies an 
event that is valued by a definite temporal value. 

24. Tasks are courses used to sequence activities, usually within plans. Tasks can be 
complex, and ordered according to an abstract succession relation. Tasks can relate to 
concrete actions or decision making; the latter deals with typical flowchart content. A 
task is different both from a flowchart node, and from an action or action type. Several 
types of tasks may be defined: scheduled task, complex task, sequential task, 
hybrid task, bag task, elementary task, action task, control task, loop task, 
cyclical task, branching task, case task, alternate task, concurrent task, parallel 
task, any order task, beginning task, ending task , and maximal task. 

 
Level of Formalization: High. 
 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 25 of 140 

References 

 
[1] Tate, A., Hendler, J. and Drummond, M., (1990). A Review of AI Planning 

Techniques, In J. Allen, J. Hendler and A. Tate (eds.) Readings in Planning Morgan 
Kaufmann, pp. 26-49 

[2] Benjamins, R., Nunes de Barros, L., Valente, A., (1996) “Constructing Planners 
Through Problem-Solving Methods” available on website 
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/benjamins/doc.html. 

[3] Myers, K.L., Wilkins, D.E., (1997) “The Act Formalism Version 2.2” available on 
website http://www.ai.sri.com/~act/act-spec.pdf  

[4] Tate, A. (1998) “Roots of SPAR - Shared Planning and Activity Representation”, The 
Knowledge Engineering Review, Vol. 13(1), pp. 121-128, Special Issue on "Putting 
Ontologies to Use" (eds. Uschold, M. and Tate, A.), Cambridge University Press. 

[5] Pease, A. (1998) “The Warplan: A Method Independent Plan Schema” available on 
website home.earthlink.net/~adampease/professional/AIPS98.ps; a more detailed 
version on http://reliant.teknowledge.com/CPR2/Reports/CPR-
RFC4/Design.html#_Toc435005571. 

[6] Schlenoff, C., Gruninger, M., Ciocoiu, M., Lee, J., (1999) “The Essence of the Process 
Specification Language”. Special Issue on Modeling and Simulation of Manufacturing 
Systems in the Transactions of the Society for Computer Simulation International, 
available on website http://www.mel.nist.gov/msidlibrary/doc/essence.pdf. 

[7] Gil, Y., and Blythe, J., (2000) “PLANET: A Shareable and Reusable Ontology for 
Representing Plans”. In AAAI 2000 workshop on Representational Issues for Real-
world Planning Systems, available on website http://www.isi.edu/expect/papers/gil-
blythe-aaai00-2.pdf. 

[8] The Enteprise Ontology, available on website 
http://www.aiai.ed.ac.uk/project/enterprise/enterprise/ontology.html 

[9] McDermott (2003) “OPT Manual Version 1.6 *Draft**” available on website 
http://cs-www.cs.yale.edu/homes/dvm/papers/opt-manual.pdf. 

[10] Oberle, D., Mika , P., Gangemi, A., Sabou, M. (2004) “Foundations for service 
ontologies: Aligning OWL-S to DOLCE” in Staab, S., and Patel-Schneider, P., (eds.), 
Proceedings of the World Wide Web Conference (WWW2004), Semantic Web Track. 

[11] Rajpathak, D., Motta, E. (2004) “An Ontological Formalization of the Planning 
Task”. To appear at FOIS-2004. 

[12] http://www.wfmc.org/standards/model.htm. 
[13] van Elst, L., Abecker, A.: Ontologies for information management: balancing 

formality, stability, and sharing scope. Expert Systems with Applications 23 (2002), 
357–366. 

[14] Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., WonderWeb 
Deliverable D18: The WonderWeb Library of Foundational Ontologies, 
http://wonderweb.semanticweb.org (2003). 

[15] Gangemi, A., Mika, P.: Understanding the Semantic Web through Descriptions and 
Situations. In Meersman, R., et al. (eds.), Proceedings of ODBASE03 Conference, 
Springer, Berlin (2003). 

[16] Masolo, M., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, G., 
Guarino, N.: Social Roles and their Descriptions, in Didier Dubois, Christopher Welty, 
Mary-Anne Williams (eds.), Procedings of the Ninth International Conference on the 
Principles of Knowledge Representation and Reasoning (KR2004) Whistler, BC, 
Canada June 2-5, 2004 p.267-277. 

[17] http://wonderweb.semanticweb.org. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 26 of 140 

[18] http://www.loa-cnr.it. 
[19] Jennings, N.R., Wooldridge, M.J. (eds.): Agent Technology: Foundations, 

Applications and Markets, Berlin: Springer Verlag, 1998. 
[20] Brentano, F., Psychologie vom empirischen Standpunkt, 2. Aufgabe, hrsg. von O. 

Kraus. Meiner (Eng. trans. ed. by L. L. McAlister, Psychology from an Empirical 
Standpoint, London), Leipzig, 1924. 

[21] Eco, U., Kant e l’ornitorinco, Milano, Bompiani, 1997. 
[22] Jakobson, R.: Linguistics and Poetics: Closing Statement. In: Style in Language. 

MIT Press, Cambridge, MA,1960. 
[23] Galton, A.: Reified Temporal Theories and How To Unreify Them. Proceedings of 

the Int. Joint Conference on Artificial Intelligence, 1991. 
[24] Akinkunmi, B. O.: On the Expressive Limits of Reified Theories. Journal of Logic 

and Computation 10(2) pp. 197–213, April 2000. 
[25] Ghidini C., Giunchiglia F., "Local models semantics, or contextual reasoning = 

locality + compatibility". Artificial intelligence, 2001, v. 127, n. 2, p. 221-259. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 27 of 140 

3 Basic axiomatization for the plan ontology 

3.1 Introduction 

The DOLCE+DnS Plan Ontology (DDPO) specializes the concepts and relations defined in 
DOLCE [14], and some of its extensions, notably the Ontology of Descriptions and Situations 
(DnS). 
DDPO, like DnS, has a very liberal domain, which includes physical and non-physical objects 
(social entities, mental objects and states, conceptualizations, information objects, 
constraints), events, states, regions, qualities, and even “constructive” situations.  
The main target of DDPO are so-called tasks, namely types of actions, their sequencing, and 
the controls performed on them. In order to accept tasks in the domain - as clearly 
distinguished from actions and states - control operators of classical planning and process 
models are considered types of planning or decision actions, i.e. rational actions, 
distinguished from purely executable actions. Other typical procedural notions like 
precondition, postcondition, preference, etc. have a corresponding treatment in DDPO. 
The intended use of DDPO is to specify plans at an abstract level, and independently from 
existing resources. Its rich set of primitives would require a complex algebra to be 
implemented as a calculus, but our aim is not to make a plan calculus. On the contrary, we 
expect that DDPO would be implemented - through appropriate tools - as a framework to 
define detailed or approximate plans for any use (social, personal, computational). The 
resulting plans would then be grounded in some system that implements a set of 
functionalities and reasons according to the specifications given in DDPO-based plans. 
 
DDPO is presented here in FOL, with appendixes in KIF and OWL-DL. The case studies of 
Metokis will be specified as either models of DDPO, or extensions/specialisations of it. A 
sample model for a publisher plan is presented in section 4. 
 
The axiomatization for DDPO reuses or updates the following sources:  

• the Deliverable D18 from the WonderWeb Project [14], including the axiomatization 
of the basic categories of DOLCE, and in particular the categories (e.g. Non-Physical 
Endurant and its subclasses) that are specialised in the DnS extension of DOLCE 

• the DnS extension of DOLCE as presented in the DOLCE-Lite-Plus OWL-DL version 
(see annex), as well as the axiomatization of social roles and descriptions as presented 
in [16], and in particular the categories of Description, Concept, Figure, Situation, and 
their subclasses (Course, Parameter, etc.) 

• some of the extensions provided in the DOLCE-Lite-Plus OWL-DL version (see 
annex), and in particular: the modules including time predicates, space predicates, 
semiotic roles and information objects, notions related to concrete datatypes, etc. 

• the preliminary plan ontology in the previous DOLCE-Lite-Plus OWL-DL versions 
(until 3679), and in particular the categories of Plan, Task, etc. 

 
For all concepts and relations that are not explicitly recalled or presented here, please refer to 
the textual sources, as well as to the KIF and OWL-DL codes in the annexes. 
 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 28 of 140 

 
Fig. 1 A UML class diagram with top-level concepts and some relations defined in the DOLCE foundational ontology. Yellow 

nodes represent the categories. Unlabelled arrows are IS_A (subclass-of) relationships. 
 

3.2 The DOLCE foundational ontology 

DOLCE (Descriptive Ontology for Language and Cognitive Engineering, 
http://dolce.semanticweb.org) has been developed in the context of the WonderWeb project 
[17] by the Laboratory for Applied Ontology [18] of the ISTC-CNR. It is aimed at supporting 
the design of domain ontologies, and it is currently used in many industrial and academic 
projects worldwide.  
For a detailed presentation of DOLCE, we refer to [16]. We just recall here the main 
distinctions (Fig.1): 
 
Individuals. Particular (vs universal) entities are the individuals of the DOLCE ontology 
domain. Particulars can be as varied as possible: in space (e.g. a saxophone) or in time (e.g. a 
song); physical (e.g. a stone), social (e.g. a company), or mental (e.g. a desire); agentive (e.g. 
an animal) or non-agentive (e.g. a law); qualities (e.g. the color depending on the 
pigmentation of a specific eye) or quality spaces (e.g. sea green in the Mac palette); 
substances (e.g. an amount of sand) or systems (e.g. the complex of a car engine, wheels, 
gears, road, air, driver), etc. 
The four top categories of DOLCE particulars are: Endurant, Perdurant, Quality, and 
Abstract.  
Endurants are particulars in space, which participate at least in one perdurant (e.g. substances, 
objects, social entities, concepts). Endurants are distinguished into physical vs. non-physical, 
and agentive vs. non-agentive. 
Perdurants are particulars in time, which have at least one participant (e.g. events, states, 
processes, phenomena). 
Qualities are dependent particulars, “inherent” in either endurants or perdurants (e.g. actual 
colors, weights, speeds, etc.). 
Abstracts are particulars neither is space nor in time (e.g. sets, regions, metric spaces, etc.). 
There is a taxonomy that specializes the four categories: endurants are distinguished into 
physical and non-physical, perdurants into states and events, qualities into physical, temporal, 
and abstract, etc. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 29 of 140 

 
Relations for parthood, connectedness, localization, participation, inherence, dependence, etc. 
are defined in DOLCE, but not detailed here for brevity. It is possible to refer to [14] for a 
thorough axiomatization, as well as to the DDPO OWL-DL code in the annex, which is glued 
together with all the pieces of the ontologies mentioned here (the version of DOLCE-Lite-
Plus presented in the annex is 3955).  
For the sake of this work, we should mention that dependency, constitution, and inherence 
relations are specially important, because they lay down the basis for different strata of 
reality, e.g.: 
 

• a physical endurant can only be constituted by other physical endurants 
• non-physical endurants are always dependent on at least one physical endurant 
• the time of an endurant is the time of the perdurants in which it participates 
• the space of a perdurant is the space of the participating endurants 
• the time and space of a non-physical object are the time and space of the physical 

endurants on which it depends, etc. 
 
Extensions (Fig.2). The same references hold for the other extensions of DOLCE mentioned 
above: time, space, semiotic and information, reified situations, and plan-related relations. In 
Fig.3 a diagram including the basic modules of the current version of DOLCE-Lite-Plus is 
shown. 
 

 
Fig. 2 A UML component diagram showing the main modules of DOLCE-Lite-Plus. Arrows represent dependencies. 

3.3 Basic classes and relations of the DnS Ontology 

Since DDPO heavily relies on DnS, we present it here in some detail (but refer to [16] and to 
the OWL annex for completeness; updates are available at http://dolce.semanticweb.org). 

3.3.1 Introduction 
Descriptions and Situations (DnS) is a foundational ontology conceived with the purpose of 
helping to extend a (possibly, but not exclusively), foundational ontology O (the ground 
ontology) with another ontology O’, by means of: 

• reifying the intension of the relations and classes from O’ that are not in the 
vocabulary of O, but are used to talk about the same domain of interest as (or a subset 
of) the one of O 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 30 of 140 

• reifying  the extension of the classes and relations from O’ 
• reifying  the tuples from O’ (the instances from O’ relations extension)  
• embedding the resulting individuals into the domain of O.  

 
DnS provides a vocabulary and an axiomatization to type the new individuals, to interrelate 
them, and to link them to the existing predicates from O. 
DnS augments the vocabulary of O, and produces an O+, and as a consequence it also 
populates the domain of O with entities that are instances of the augmented part of the 
vocabulary. 
For instance, when using DnS to augment DOLCE vocabulary, what you get is DOLCE+. In 
DOLCE+, DOLCE plays the role of ground ontology.  
DOLCE can then be extended to e.g. a legal description of social reality, or to a planning 
framework, by embedding another ontology. To carry out such an embedding, we can use 
DOLCE+ and a semantic method that is presented here. 
An example shows the way DnS can be used, and how this is different from other approaches 
to ontology extension. 
Suppose that someone wants to express the legal constraints imposed by the norms of a legal 
system. The ontology that potentially1 encodes such a system is not a part of DOLCE, even 
though its domain is intuitively a subset of the domain of DOLCE. 
Then you may want to extend DOLCE with a description of social reality under a legal 
perspective. Typically, this can be done by aligning or merging DOLCE with a legal 
ontology. On the other hand, with this basic approach there are problems related to arising 
vocabulary conflicts, alternative accounts for the same domain, etc.  
An elegant way of managing these problems is using formal contexts [25], and assuming 
ontologies as a variety of context. But in order to manipulate efficiently all the mappings 
(bridging axioms) required by formal contexts, a powerful meta-level reasoning is required, 
which deals with motivations to create such mappings. 
Here we propose another approach that uses embedded contexts, i.e. contexts that are reified 
within an ontology that has been augmented with DnS. The advantages of a reified approach 
are described in [15]. Notice that this approach is not in competition with formal contexts, and 
it could be used also to start the research on meta-level reasoning in the formal context 
framework. 
Back to the example, DnS makes it possible to describe the ideal (legal) view on the 
behaviour of given social entities (as “situations”), according to a given legal system, and 
without changing the DOLCE+ domain, because the reified predicates and tuples of the legal 
ontology become instances of the DnS predicates. The legal ontology is then transformed into 
an embedded context within DOLCE+. 
In the next section we provide a synthetic overview of a reification semantics for embedded 
contexts. 

3.3.2 A basic semantics for embedded contexts 
(a) ontologies 
 
Here we assume ontologies as (strongly) typed first-order axiomatic theories without free 
variables, having a signature (or vocabulary) Π, a domain of quantification Δ (and its product 
Δx...xΔ), a set of class extensions Σ, and a set of relation extensions Σn. The union of Σ and Σn 
has the same cardinality as Π. 

                                                             
1 “Potentially”, because the ontology extensions we are going to discuss are not necessarily realized: they must only be formalizable in 
principle, i.e. when using DnS, it’s possible to work with a virtual ontology that is realized only in the reified form we introduce here. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 31 of 140 

For the sake of this presentation, we assume that Δ is partitioned into the sets from Σ and Σn 
(which can be false in the general case). 
Π is partitioned into a set Πc of unary predicates ϕ1...n, and a set Πr of ≥2-ary predicates ρ1...n.  
Δc⊆Δ includes the individuals ι1...n, and is partitioned into sets of individuals σ1...n ∈ Σ for each 
predicate ϕi in Πc. 
Δr=(Δx...xΔ) includes the tuples τ1...n, and is partitioned into the cartesian products 
(σ1x...xσk)1...n ∈ Σn

 (σi⊆Δ) of the domains and ranges of each predicate ρi in Πr. 
We will call each ϕi a class intension, each ρi a relation intension, each σi a class extension, 
each (σ1x...xσn)i a relation extension, each ιi an individual, and each τi a tuple (or relationship). 
Moreover, we consider two special subsets of class and relation intensions: Γc⊆Πc, and 
Γr⊆Πr, including the axioms defined for any ϕi (we are interested in particular to e.g. the 
following axiom schemata: [ϕ(x) ∧ ψ(x)], [ϕ(x) ∨ ψ(x)], [¬ϕ(x)], [∃y. ρ(x,y) ∧ ϕ(y)], [∀y. 
ρ(x,y) → ϕ(y)], etc.), or for any ρi (e.g.: [ρ(x,y) ∧ σ(x)], [ρ(x,y) ∨ σ(x)], [¬ρ(x,y)], [(ρ(x,y) ∧ 
σ(y,z)) → ρ(x,z)], etc.), by using first-order construction operators (quantifiers and boolean 
operators).  
Since no names are usually provided for axioms in the signature Π, we assume anonymous 
placeholders αc1...n∈Γc for class axioms, and αr1...n∈Γr for relation axioms. Correspondingly, 
for each αci∈Γc there is a σΓi ∈ Σ, and for each αri∈Γr there is a (σ1x...xσk)1...n ∈ Σn. 
 
 (b) type- and token-reification 
 
According to [23], «semantically, to reify a concept is to accord it full ontological status, so 
that it becomes an entity we can ascribe properties to and, in principle, quantify over». 
Among the ontology elements we have listed, we have either intensional or extensional 
representions of concepts, therefore, while we follow the above definition, we also assume a 
rather large reification vocabulary, consisting of: 

• a mapping operator for type reification [23][24], TyR(ϕ) → x holding between 
predicates and individuals so that: ∀ϕ∈Π ∃x∈ΔΠ. TyR(ϕ,x), where Π is any (first-
order) ontology Oi  signature, Δ is any (first-order) ontology O’j (O’i ≠ Oj) domain of 
quantification, and ΔΠ∈Δ is the domain of reified predicates from Π. If ϕ is a class, 
TyR(ϕ) → x is called c-type reification; if ϕ is a relation (≥2-ary predicate), TyR(ϕ) 
→ x is called r-type reification. 

• a mapping operator for token reification [23][24], ToR(τ) → x holding between 
tuples and individuals so that: ∀τ∈Δ ∃x∈ΔΔ. ToR(τ,y), where τ∈ρ –ρ being a ≥2-ary 
predicate from Π–, Δ is the domain of any (first-order) ontology Oi, and ΔΔ⊆Δ’ is the 
domain of reified tuples from Δ –Δ’ being the domain of any (first-order) ontology O’j 
(O’i ≠ Oj). Notice that the condition (O’i ≠ Oj) is needed in order to exclude the 
possibility of reifying an ontology into itself. 

• a mapping operator for set reification, SR(σ) → x, holding between sets and 
individuals so that: ∀σ∈Σ ∃x∈ΔΣ. SR(σ,x), where Σ is the set of class extensions 
from any (first-order) ontology Oi, each σi∈Σ being the extension of a ϕi∈Π; Δ is the 
domain of quantification of any (first-order) ontology O’j (O’i ≠ Oj), and ΔΣ∈Δ is the 
domain of reified sets from Σ. 

• a mapping operator for cartesian set reification, CSR(σ1x...xσn) → ϕ, holding 
between sets of cartesian products and classes so that: ∀(σ1x...xσn)∈Σn ∃ϕ∈ΔΣn. 
CSR[(σ1x...xσn),ϕ], where Σn is the set of relation extensions from any (first-order) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 32 of 140 

ontology Oi, each (σ1x...xσn)i∈Σ
n being the extension of a ρi∈Π; Δ is any (first-order) 

ontology O’j (O’i ≠ Oj) domain of quantification, and ΔΣn∈Δ is the domain of reified 
sets of cartesian products from Σn. 

 
Our reification vocabulary allows to map both the intension and extension of an ontology: 
second-order entities (classes, relations, tuples, class extensions) are reified as individuals 
(first-order entities), while third-order entities (relation extensions) are reified as classes 
(second-order entities). 
 
 (c) ontology augmentation 
 
We also assume an augmentation operator ⊕(O1,O2) → O3, where Oi is an ontology, which 
joins the signatures and domains of O1 and O2 into O3: ΠO3 ≡ ΠO1∪ΠO2 and: ΔO3 ≡ ΔO1∪ΔO2. 
Augmentation is the default practice for ontology mapping or extension, but its use here is 
limited to qualified augmentation, as the one we propose here with DnS. For this reason, we 
do not analyze the case of overlapping signatures (which may involve merging procedures), 
because they are not relevant for the reification issues presented here. Moreover, domain 
augmentation is trivial in the case of equivalent or partial domains, which is the case 
addressed for augmentation with DnS.  
 
(d) DnS semantics 
 
We consider the following ontologies in order to explain the DnS semantics: 
 
(1) an ontology O, including a signature ΠO and a domain ΔO. 
 
(2) the ontology DnS, which includes a signature Πdns and a domain Δdns, and more 
specifically: 
- Πdns is partitioned into Πcdns including unary predicates, and Πrdns including ≥2-ary 
predicates. Accordingly, Δdns is the domain of quantification for DnS, Δcdns⊆Δdns, including 
individuals, and Δrdns=(ΔdnsxΔdns), including tuples. 
- Πcdns includes predicates that are used as types for any reified predicate from ontologies 
different from DnS, and is partitioned into the set of Πcondns concept types, the set Πdesdns of 
description types, the set Πsitdns of situation types, and the set Πcolldns of collection types. 
Accordingly, Δcdns is partitioned into the set of concepts Δcondns, the set of descriptions 
Δdesdns, the set of situations Δsitdns, and the set of collections Δcolldns.2 
- Πrdns contains the binary and ternary predicates used to axiomatize DnS, and to link the 
individuals from Δcdns (see below). Accordingly, Δrdns contains the tuples linking the 
individuals from Δcdns. 
We also introduce here an embedding operator ↵(O1,O2) → O3, to be read3: O3 results from 
embedding O2 into O1 – where Oi are ontologies, O1 is an ontology resulting from ↵(O,DnS) → 
O1, and where O and O2 share the same domain. The embedding operator implies the 
following operations: 

                                                             
2 The theory is still under development, and this partition is not exhaustive: for the sake of clarity, here we do not mention other partitions 
that have been drawn, and are introduced in the subsequent axiomatization, i.e. information objects and figures. 
3 An alternative reading is: O3 is the embedding of O2 into O1. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 33 of 140 

• putting both the domain Δ1 of O1, and a domain ΔΠ2 – created after the application of 
the mapping operator TyR (ϕ) → x over all the unary predicates ϕ1...n and all the ≥2-
ary predicates ρ1...n of the signature Π2 from O2 – into the domain Δ3 of O3 

• putting the domain ΔΔ2 – created after the application of the mapping operator ToR(τ) 
→ y over all the tuples τ1...n of the domain Δ2 from O2 – into the domain Δ3 of O3 

• putting the domain ΔΣ2 - created after the application of the mapping operator SR(σ) 
→ z over all the sets σ1...n from the domain Δ2 from O2 – into the domain Δ3 of O3 

• putting every individual x1...n from the domain ΔΠ2 into a set ψi created within either 
Δcondns or Δdesdns. 

• putting every individual y1...n from the domain ΔΔ2 into a set χi created within Δsitdns.  
• putting every individual z1...n from the domain ΔΣ2 into a set ζi created within Δcolldns.  

 
(3) an ontology O+ resulting from ⊕(O,DnS) → O+. It has a signature ΠO+ ≡ ΠO∪Πdns, and a 
domain ΔO+ ≡ ΔO∪Δdns.  
Moreover, in the case of foundational ontologies like DOLCE, which assume a domain as 
large as possible4, the following axiom is applicable: ∀ϕ∈Πdns ∃ψ∈ΠO. ϕ⊆ψ, and, 
consequently, from ⊕(O,DnS) → O+, ΔO⊆Δdns (e.g. for DOLCE = O and DOLCE+ = O+). 
 
(4) a new ontology L (e.g. a legal one), with a signature ΠL partitioned into ΠcL (for unary 
predicates) and ΠrL (for ≥2-ary predicates) and with a domain ΔL⊆ΔO, with ΔcL⊆ΔL, and 
ΔrL=(ΔLxΔL).  
If L is considered for reification in O+, the embedding operator can be applied: ↵(O+,L) → 
O+L. 
Embedding causes ΠL to be transformed into a domain ΔΠL⊆Δdns, then the O+L domain, ΔO+L, 
subsumes ΔΠL by transitivity of subsumption (since Δdns⊆ΔO+L). ΔrL, on its turn, is transformed 
into a domain ΔΔL⊆Δdns. 
The signature of O+ is in principle unchanged: ΠO+L=ΠO+, modulo possible adjustments of the 
taxonomy from Πdns as inherited by ΠO+. In fact, in O+L, it is a theorem that ∀x∈ΔΠL ∀y∈ΔΔL 
∃(ϕ,χ)∈Πdns. ϕ(x) ∧ χ(y). The theorem is inferrable from the axioms for the reification and 
embedding operators.  
In practice, by admitting classes derived from the application of the cartesian-set reification 
operator CSR over n-ary relations extensions, ΠO+ is changed in ΠO+L by the set of all 
situation classes corresponding to satisfiable descriptions.5 
In particular:  

• each ϕi ∈ ΠcL (unary predicates) is type-reified as an individual concept ci ∈ ΔΠcL ⊆ 
Δcondns 

• each ρi ∈ ΠrL (≥ 2-ary predicates) is type-reified as an individual description di ∈ ΔΠrL 

⊆ Δdesdns 
• each τi ∈ ΔrL is token-reified as an individual situation si ∈ ΔΔrL ⊆ Δsitdns 
• each σi ∈ ΣL is set-reified as an individual collection zi ∈ ΔΣL ⊆ Δcolldns, and 
• each (σ1X...Xσn)i ∈ ΣnL is cartesian-set-reified as a situation class Si ∈ ΠΣnL ⊆ Πdns.  

 
                                                             
4 For example, DOLCE ranges on possibilia: all possible entities – independently of their actual existence; in practical terms: the entities that 
are assumed to exist according to someone for some reason. 
5 The reason why we tend to understate this change of signature is the dependence of situation classes on descriptions: no class can be added 
to ΠO+ unless there is a corresponding satisfiable description in the domain ΔΠrL. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 34 of 140 

Since all domains ΔΠL, ΔΔrL, and ΔΣL, generated by reification, are subsets of Δdns, the domain 
of O+ is not changed by the reification process in O+L. 
Since the vocabulary ΠΣnL, generated by reification, is a subset of the vocabulary Πdns, then the 
vocabulary of O+ is only increased in the DnS branching of O+L, as required by the method. 
Summing up, what’s happened to L?  

• the signature ΠL has been type-reified into ΔO+L 
• the domain of individuals ΔcL is a subset of ΔO because of the shared domain 

assumption, then it is into ΔO+L by definition 
• the domain of tuples ΔrL has been token-reified into ΔΔrL⊆ΔO+L, and  
• the domain of extensional sets ΣL has been set-reified into ΔΣrL⊆ΔO+L.  

 
That’s how context embedding works, once an ontology O has been augmented with DnS. 
For example, given a tuple r(a,b,t) in ΔrL, with A(a), B(b) and T(t) from ΔcL, belonging to ΣL, 
and r(a,b,t) ∈ R(x,y,z) from ΠrL, the predicate R is reified as a description d, the relationship 
r is reified as an individual situation s, the intensions of A, B and T are reified as concepts 
cona, conb, cont, the extensions of A, B and T are reified as collections colla, collb and collt, 
and the individual constants a, b, and t are already included in ΔcL by definition, and are 
related to s in the way presented below. 
If we substitute r(a,b,t) with a meaningful tuple (meaning that a certain John is eating some 
chocolate at a certain given night), e.g.: eats(john#,chocolate#,atNight#), with Person(john#), 
Food(chocolate#), and TimeInterval(atNight#), and Eats(x,y,z) → Person(x) ∧ Food(y) ∧ 
TimeInterval(z), the reified entities will be: 
 

 
(e) DnS relations 
Embedding would be a very partial mapping, if the axioms existing in L wouldn’t be mirrored 
in O+L. For this purpose, the predicates from Πrdns come into our aid.  
Here we only provide a list of the basic predicates, with the minimal axioms for them (see the 
DOLCE+DnS augmentation for a richer set of predicates and axioms). 
 

Non-reified Reified DnS  Type 
Eats(x,y,z) eats# Description(x) 
Person(x) person# Concept(x) 
Food(y) food# Concept(x) 
TimeInterval(z) timeInterval# Concept(x) 
eats(john#,chocolate#,atNight#) johnEatingChocolateAtNight# Situation(x) 
extension(Person(x)) personCollection# Collection(x) 
extension(Food(y)) foodCollection# Collection(x) 
extension(TimeInterval(z)) timeIntervalCollection# Collection(x) 
extension(Person(x)∧Eats(x,y,z)) eatingPersonCollection# Collection(x) 
extension(Food(y)∧Eats(x,y,z)) eatenFoodCollection# Collection(x) 
extension(TimeInterval(z)∧Eats(x,y,z)) eatingTimeIntervalCollection# Collection(x) 
john# n/app  
chocolate# n/app  
atNight# n/app  



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 35 of 140 

Token reification is kept together by the relation settingFor ∈ Πrdns, which is used to link a 
situation to the individual constants from the reified tuple; e.g. wrt the example above: 
settingFor(s,a), settingFor(s,b), settingFor(s,t). 
Moreover, we need token reification to be explicitly related to r-type reification, since a tuple 
must satisfy the predicates and axioms of the theory on which the elements of the tuple 
depend.  
In order to do this, we add more predicates from Πrdns, the most important of them being: 
satisfies(s,d), purelySatisfies(s,d), strictlySatisfies(s,d), basiclySatisfies(s,d), 
completelySatisfies(s,d), parameter(p), outOfBound(x,p), uses(d,c), and classifiedBy(x,c), with 
s∈Δsitdns, d∈Δdesdns, c∈Δcondns, p∈Δcondns, x∈ΔcO, which are axiomatized as follows wrt to 
token reification: 
 
(i) Concept(c) → ∃d. uses(d,c) 
(ii) ∀s,x. (Situation(s) ∧ settingFor(s,x)) → ∃d,c. Description(d) ∧ Concept(c) ∧ uses(d,c) 

∧ classifiedBy(x,c) 
(iii) Parameter(p) ↔ Concept(p) ∧ ∃x. classifiedBy(x,p) ∧ ∀x∃ϕ. [classifiedBy(x,p) → 

ϕ(x)] ∧ ∃ψ∈ΠO. ϕ(x) → ψ(x)]  [a parameter is a concept that always classifies at 
least one value from a set ϕ, and such a set is a subset of the extension of an existing 
specified class ψ∈ΠO] 

(iv) outOfBound(x,p) → ¬classifiedBy(x,p) ∧ ∃ψ∈ΠO. ψ(x) ∧ ∀y. classifiedBy(y,p) → 
(∃ϕ. ϕ(x) → ψ(x))  [a value is out of bound of a parameter if it is in the same given 
datatype class as the allowed values, but in a disjoint subset] 

(v) basiclySatisfies(s,d) ↔ ∃x. settingFor(s,x) ∧ ∃c. Concept(c) ∧ uses(d,c) ∧ 
classifiedBy(x,c) ∧ ¬∃y,p. settingFor(s,y) ∧ Parameter(p) ∧ outOfBound(y,p) 

(vi) completelySatisfies(s,d) ↔ basiclySatisfies(s,d) ∧ ∀c. uses(d,c) → ∃x. settingFor(s,x) 
∧ classifiedBy(x,c) 

(vii) purelySatisfies(s,d) ↔ ∃x. settingFor(s,x) ∧ ∀x. settingFor(s,x) → ∃c. uses(d,c) ∧ 
classifiedBy(x,c) 

(viii) strictlySatisfies(s,d) ↔ purelySatisfies(s,d) ∧ ∀c. uses(d,c) → ∃x. settingFor(s,x) ∧ 
classifiedBy(x,c) 

 
The axioms mean that, if a situation is a settingFor some entity, that entity must be classified 
by a concept used by some description. 
Moreover, the notions of parameter and outOfBound are needed to create constraints on 
different kinds of reified satisfaction relations holding between situations and descriptions. 
If a situation basiclySatisfies a description, there exists at least one entity in its setting that is 
classified by a concept used by that description, and no value in the setting is out of bound of 
a parameter used by that description. 
A situation completelySatisfies a description if it basicly satisfies that description, and if each 
concept used by the description classifies some entity(ies) in the situation setting. 
A situation purelySatisfies a description if all the entities in its setting are classified by 
concept(s) used by that description. 
A situation strictlySatisfies a description if it purelySatisfies that description, and if all the 
concepts used by the description classify some entity from the situation.  
Notice that the outOfBound condition required in ‘basiclySatisfies’ and ‘completelySatisfies’ 
is trivial in ‘purelySatisfies’ and ‘strictly satisfies’, because no value in a situation that 
purelySatisfies a description can be out of bound. In fact, ‘strictlySatisfies’ is the traditional 
relation between reified relations and their reified tuples. 
 
 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 36 of 140 

 
 
 
 
 
 
 
 
We also need set reification to be explicitly related to c-type reification, and the most 
important predicates from Πrdns for that purpose are: coveredBy(x,c), membership(a,x), 
unifiedBy(x,d), strictlyUnifiedBy(x,d), with c∈Δcondns, x∈Δcolldns, a∈ΔcO, d∈Δdesdns, which 
are axiomatized as follows wrt to set reification: 
 
(ix) Collection(x) → ∃c. coveredBy(x,c) ∧ Concept(c) 
(x) ∀a,x. (Collection(x) ∧ membership(a,x)) → ∃c. coveredBy(x,c) ∧ classifiedBy(a,c)] 
(xi) ∀x,d. (Collection(x) ∧ unifiedBy(x,d)) ↔ ∃c. coveredBy(x,c) ∧ uses(d,c) 
(xii) ∀x,d. (Collection(x) ∧ strictlyUnifiedBy(x,d)) ↔ ∃c. coveredBy(x,c) ∧ uses(d,c) ∧ 

¬∃y. coveredBy(x,y) ∧ c≠y 
(xiii) Collection(x) → ∃d. Description(d) ∧ uses(d,c) ∧ unifiedBy(x,d) 
 
The axioms mean that a collection must be covered by at least one concept, and all its 
members will be classified by that concept.  
A collection is unified by at least one description that uses a concept that covers the 
collection.  
A collection is striclyUnifiedBy by exactly one description iff is covered by only one concept. 
StrictlyUnifiedBy also allows to capture the case of collections covered by concepts reified 
out of axioms (see “anonymous placeholders” at (a)). 
(ix) is a theorem from (i) and (vii). 
Back to the example sketched in the table, the following statements hold:  
 
Non-reified Reified 
Eats(x,y,z) → Person(x) uses(eats#,person#) 
Eats(x,y,z) → Food(y) uses(eats#,food#) 
Eats(x,y,z) → TimeInterval(z) uses(eats#,timeInterval#) 
Person(john#) classifiedBy(john#,person#) 
Food(chocolate#) classifiedBy(chocolate#,food#) 
TimeInterval(atNight#) classifiedBy(atNight#,timeInterval#) 
eats(john#,_#,_#) settingFor(johnEatingChocolateAtNight#,john#) 
eats(_#,chocolate#,_#) settingFor(johnEatingChocolateAtNight#,chocolate#) 
eats(_#,_#,atNight#) settingFor(johnEatingChocolateAtNight#,atNight#) 
extension(Person(x)) coveredBy(personCollection#,person#) 
extension(Food(y)) coveredBy(foodCollection#,food#) 
extension(TimeInterval(z)) coveredBy(timeIntervalCollection#,timeInterval#) 
extension(Person(x)∧Eats(x,y,z)) coveredBy(eatingPersonCollection#,person#), 

strictlyUnifiedBy(eatingPersonCollection#,eats#) 
extension(Food(y)∧Eats(x,y,z)) coveredBy(eatenFoodCollection#,food#), 

strictlyUnifiedBy (eatenFoodCollection#,eats#) 
extension(TimeInterval(z)∧Eats(x,y,z)) coveredBy(eatingTimeIntervalCollection#,timeInterval#), 

strictlyUnifiedBy (eatingTimeIntervalCollection#,eats#) 
 

basiclySatisfies 
 
completelySatisfies  purelySatisfies 
 

strictlySatisfies 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 37 of 140 

and the following statements can be directly inferred by means of DnS axioms: 
 

john# ∈ Person(x) membership(personCollection#,john#) 
chocolate# ∈ Food(y) membership(foodCollection#,chocolate#) 
atNight# ∈ TimeInterval(z) membership(timeIntervalCollection#,atNight#) 
john# ∈ (Person(x)∧Eats(x,y,z)) membership(eatingPersonCollection#,john#) 
chocolate# ∈ (Food(y)∧Eats(x,y,z)) membership(eatenFoodCollection#,chocolate#) 
atNight# ∈ (TimeInterval(z)∧Eats(x,y,z)) membership(eatingTimeIntervalCollection#,atNight#) 
[eats(john#,chocolate#,atNight#)] ∈ Eats(x,y,z) satisfies(johnEatingChocolateAtNight#,eats#) 

 
 
(e) Axioms on reification kinds 
From the reification vocabulary definitions, and DnS relations, we can infer that: 
∀σ,x. (SR(σ) → x) → ∃ϕ,y. [(TyR(ϕ) → y) ∧ coveredBy(x,y)] 
 (set reification implies c-type reification) 
∀τ,x. (ToR(τ) → x) → ∃ρ,y. [τ∈ρ ∧ ρ(a,...,n) ∧ (TyR(ρ) → y)] ∧ satisfies(x,y) 
 (token reification implies r-type reification) 
∀(σ1X...Xσn),ϕ. [(CSR(σ1X...Xσn) → ϕ) ∧ ∃x. ϕ(x)] → ∃ρ,y. [ρ(a,...,n) ∧ (TyR(ρ) → y)] ∧ satisfies(x,y) 
 (cartesian set reification implies r-type reification) 
 
(f) Creative use of DnS 
The use of DnS has been profiled here as an ontology of reification, i.e. used in presence of 
an actual non-reified, non-embedded ontology. While this approach seems promising (e.g. for 
ontology design patterns, ontology elements annotation models, mapping, etc.), the very 
reason for its definition lies in its capability to build ontologies that embed contexts 
(viewpoints, configurations) in their domain, or that profile incomplete, “common-sense-like” 
theories with a potential for discussion, comparison, dynamic enhancement, etc. 
In other words, DnS can be used in absence of an actual ontology to be reified and embedded: 
we can do as if that ontology exist, therefore introducing descriptions, concepts, situations, 
and collections only on the basis of DnS axioms. When used in this way, DnS “sketches” an 
ontology as an embedded context, which can be possibly de-reified by means of the converse 
methodology. We call this use creative. 
As a matter of fact, after looking at the tables above, it results that reification can be a useful 
means for meta-level reasoning, but the example seems also pretty ad hoc. For example, the 
creation of collections for persons, food and time intervals in general is hardly very 
meaningful (although technically sound, for example when dealing with most description 
logics, which cannot express n-ary relations). 
On the contrary, the creative use of embedded contexts is focused, since it only encodes the 
individuals and statements that are useful or known to the modeller e.g. for a special purpose, 
or when knowledge is fragmented. 

3.3.3 A DOLCE-related axiomatization for the basic notions of DnS 
In this section we introduce DnS as an augmentation to DOLCE, then assuming that the 
domain of DnS is a subset of DOLCE’s. 
The main intent of DnS is enabling the ontological talk about non-physical objects, especially 
social and knowledge objects. The rationale is that the properties that we attribute to entities 
are entities themselves, and that we can treat them as “knowledge” or “information” objects 
(see below). 
In more detail, DnS is based on a fundamental distinction between descriptions (for instance, 
in the legal domain, legal descriptions, or conceptualizations, which encompass laws, norms, 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 38 of 140 

regulations, crime types, etc.) and situations (again, in the legal domain, legal facts or cases, 
which encompass legal states of affairs, non-legal states of affairs that are relevant to the Law, 
and purely juridical states of affairs). This distinction may be used somewhat recursively (in 
the example of the legal domain, we may use the distinction to represent meta-juridical 
conceptualizations, i.e. meta-norms, or norms about norms).  
Differently from most ontologies, DnS has been built  in order to facilitate ontology-driven 
data entry to experts in knowledge-intensive domains. In fact, its very first formulation was a 
Design Pattern represented by means of a UML class diagram (Fig.3). 
 

 
Fig. 3 The DnS Design Pattern as a UML class diagram. The lower part of the pattern is called the ground ontology, the higher is 

called the descriptive ontology; a situation satisfies a description if the two parts match according to specified rules. Part of 
the structure matching expected by situations satisfying descriptions appears symmetrically from the overall shape. 

 
DnS basic predicates and axioms are presented in the following. Firstly, we introduce the 
signature for DnS in DOLCE (including both DOLCE predicates, which are underlined here, 
and predicates defined or axiomatized in DnS), divided here into a) unary predicates, b) 
binary predicates, and c) ternary predicates. 
 
Unary predicates: { Particular, Perdurant, Endurant, PhysicalObject. AgentivePhysicalObject, 
NonPhysicalObject, AgentiveSocialObject, NonAgentiveSocialObject, CognitiveAgentivePhysicalObject, 
Agent, CognitiveAgent, Description, Plan, Concept, Role, Course, Task, Parameter, Situation, 
Figure, AgentiveFigure, Collection, OrganizedCollection, Collective, Region, TimeInterval } 
 
Binary predicates: { PresentAt, Part, ProperPart, Defines, Satisfies, P-Satisfies, R-Satisfies, C-
Satisfies, Setting, SettingFor, Uses, SubconceptOf, Specializes, TemporalLocation, 
SpatialLocation, ReferencedTemporalLocation, ReferencedSpatialLocation, Covers, 
Characterizes, Unifies, SRD } 
 
Ternary predicates: { SpecificallyDependsOn, GenericallyDependsOn, GenericConstituentOf, 
Participant, Conceives, Sit-Conceives, DirectlySit-Conceives, Classifies, PlayedBy, Sequences, 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 39 of 140 

ValuedBy, Adopts, Creates, DeputedBy, ModalTarget, AttitudeTowards, ActsFor, 
RequisiteFor, Membership, ExtensionallyEquivalent } 
 
For presentation reasons, sometimes we anticipate axioms and definitions for a predicate that 
uses other predicates that have not yet been axiomatized. This is not a good practice from the 
logical viewpoint, but helps maintaining an intuitive narrative. 
The time indexing variables (“t”) in the following formulas are not explicitly typed, but are to 
be assumed as typed by the predicate TimeInterval. 
 
A Description is a (non-agentive) social object which represents a conceptualization, hence it 
is generically dependent on some agent and communicable [16]. Example of descriptions are 
regulations, plans, laws, diagnoses, projects, plots, techniques, etc.: 

 
(A1) Description(x) → NonAgentiveSocialObject(x) 
(A2) Description(x) → ∃y,t. AgentivePhysicalObject(y) ∧ GenericallyDependsOn(x,y,t) 
(A3) Description(x) → ∀y. Part(x,y) → NonPhysicalObject(y)  

 
Like physical objects, social ones have a lifecycle, can have parts, etc. Unlike physical 
objects, social (like all non-physical) ones are generically dependent on some agentive 
physical object. The relationship between a description and an agent is the following:  

 
(A4) Conceives(x,y,t) → GenericallyDependsOn(y,x,t) ∧ Agent(x) ∧ Description(y)  
 

Hence, a description generically depends on some agent which is (at some time)6 able to 
conceive it. Agent is introduced here as a primitive (subclass of Endurant), and is axiomatized 
later here. 
 
Agentivity in DOLCE is not (explicitly) defined, but by means of DnS we can now define it as 
follows: 
 

(D1) AgentivePhysicalObject(x) =df PhysicalObject(x) ∧ ∃y,t. Description(y) ∧ Conceives(x,y,t) 
 
In simple words, agentivity is defined here in a wide sense as implying conception (to be 
characterized in a dedicated – but not developed as yet – ontology of mind). A conception 
only requires intentionality in Brentano’s terms [20], i.e., the ability to represent something to 
oneself. 
Compliying i.e. with the BDI paradigm - when it attributes to cognitive agents not only the 
ability of self-representing descriptions like beliefs, desires, and intentions, but also of 
representing the actions schemata necessary to the achievement of their goals -, we can also 
identify a second, stronger sense of agentivity that involves the conceiving of descriptions 
about descriptions (“meta-description”): 
 

(D2) CognitiveAgentivePhysicalObject(x) =df AgentivePhysicalObject(x) ∧ ∃y,z,c,t. Description(y) ∧ 
Description(z) ∧ Concept(c) ∧ Conceives(x,y,t) ∧ Defines(y,c) ∧ Classifies(c,z,t) 

 
D2 says that a CognitiveAgentivePhysicalObject is able to conceive descriptions that define 
concepts that classify other descriptions; in practice a cognitive agent is able to compare, 
reuse, reason over alternative descriptions by framing them within a meta-level description. 
Conceptions can be held by agentive social objects (e.g. organizations) as well, through the 
cognitive agentive physical objects they depend on: 
                                                             
6 Notice, however, that since ternary relationships are not supported by OWL-DL, time is ignored in the OWL-DL version given in the 
Annex, and will have to be managed in an extrinsic way in practical applications. There is also the possibility of reifying temporalized 
relations by using DnS, but this has not been considered here. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 40 of 140 

 
(A5) (Conceives(x,y,t) ∧ AgentiveSocialObject(x)) → ∃z,t. CognitiveAgentivePhysicalObject(z) ∧ 

GenericallyDependsOn(x,z,t) ∧ Conceives(z,y,t) 
 
The way agents create, choose, or transform their conceptualizations, however, is extremely 
diversified. We do not enter here this difficult area, leaving it to future investigation. On the 
other hand, we need some preliminary distinction, in order to relate agents and descriptions 
that represent those conceptualizations.  
In order to simplify our formulas and try to comply with the common-sense polysemy of 
“agent”, we define it here as a catch-all class, encompassing either agentive physical objects 
or agentive social objects: 
 

(D3) Agent(x) =df AgentivePhysicalObject(x) ∨ AgentiveSocialObject(x) 
 

We also introduce a restricted class for cognitive agents: 
 
(D4) CognitiveAgent(x) =df CognitiveAgentivePhysicalObject(x) ∨ (AgentiveSocialObject(x) ∧ ∃y,t. 

CognitiveAgentivePhysicalObject(y) ∧ GenericallyDependsOn(x,y,t)) 
 

An important relation between agents and descriptions is creation, implying that a description 
is specifically dependent on a cognitive agent that firstly conceives of it at some time interval 
(of a magnitude of choice in a given context):  

 
(A6) Creates(x,y) → CognitiveAgent(x) ∧ SpecificallyDependsOn(y,x) ∧ ∃t. Conceives(x,y,t) ∧ 

¬∃x',t'. t'<t ∧ Conceives(x',y,t') 
 
Another important relation between agents and descriptions is adoption (requiring creation 
and previous conceiving): 
 

(A7) Adopts(x,y,t) → Conceives(x,y,t) ∧ CognitiveAgent(x) ∧ Description(y) ∧ ∃z,t’. 
CognitiveAgentivePhysicalObject(z) ∧ Creates(z,y,t’) ∧ t’<t 

(A8) Adopts(x,y,t) → ∃t1. >(t1,t) ∧ Conceives(x,y,t1) 
 
Descriptions have typical components, called concepts (introduced later in some detail). 
Concept types can vary according to the ground ontology that is taken into account. This 
version of DnS takes DOLCE as its ground ontology. 
 
A situation is a non-agentive social object which represents a state of affairs or relationship, 
or tuple, or fact (see DnS semantics in 3.3.2), under the assumption that its components ‘carve 
up’ a view (a setting) on the domain of an ontology by virtue of a description. A situation 
aims at representing the referent of a “cognitive disposition” towards a world, thus reflecting 
the willingness, expectation, desire, belief, etc. to carve up that world in a certain way. 
Consequently, a situation has to satisfy a description (see below).  

 
(D5) Situation(x) =df NonAgentiveSocialObject(x) ∧ (∃y. Description(y) ∧ Satisfies(x,y)) ∧ (∃z. 

Particular(z) ∧ ¬Situation(z) ∧ Setting(z,x)) 
(A9) Situation(x) → ∀y. Part(x,y) → Situation(y) 

 
The setting relation holds between situations and particulars from the ground ontology. At 
least a perdurant must exist in the situation setting: 

 
(A10) SettingFor(x,y) → Situation(x) ∧ Particular(y) ∧ ¬Situation(y) 
(A11) SettingFor(x,y) → ∃z. Perdurant(z) ∧ SettingFor(x,z) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 41 of 140 

(A12) Setting(x,y) =df SettingFor(y,x) 
 

A situation can have both an internal and a referenced time or space. While its internal 
time/space is agent-dependent (it’s the time/space of its conceiving by an agent), its 
referenced time/space is constituted by the time and space of the (“referenced”) particulars in 
the setting7: more specifically, the referenced temporal location of a situation has only parts 
that are temporal locations of perdurants that are in the setting of the situation: 

 
(A13) ∀s,t1,t2. [(Situation(s) ∧ ReferencedTemporalLocation(s,t1) ∧ Part(t1,t2)) → ∃p. (Perdurant(p) ∧ 

SettingFor(s,p) ∧ TemporalLocation(p,t2))] 
 
and, conversely, if a situation has a perdurant in the setting, the temporal location of the 
perdurant is part of its referenced temporal location: 
 

(A14) ∀s,p. [Situation(s) ∧ Perdurant(p) ∧ SettingFor(s,p)] → ∃t1,t2. ReferencedTemporalLocation(s,t1) 
∧ TemporalLocation(p,t2) ∧ Part(t1,t2) 

 
moreover, if a situation has an endurant in the setting, the temporal location of a perdurant in 
the same setting, in which that endurant participates, is also part of the temporal location of 
the situation: 
 

(A15) ∀s,e. [Situation(s) ∧ Endurant(e) ∧ SettingFor(s,e)] → ∃t1,t2,p. 
ReferencedTemporalLocation(s,t1) ∧  Perdurant(p) ∧ TemporalLocation(p,t2) ∧ 
Participant(p,e,t2) ∧ Part(t1,t2) 

 
The referenced spatial properties of a situation follow from similar axioms: 

 
(A16) ∀s,r1,r2. [(Situation(s) ∧ ReferencedSpatialLocation(s,r1) ∧ Part(r1,r2)) → ∃e. (Endurant(p) ∧ 

SettingFor(s,e) ∧ SpatialLocation(p,r2))] 
(A17) ∀s,e. [Situation(s) ∧ Endurant(e) ∧ SettingFor(s,e)] → ∃r1,r2. ReferencedSpatialLocation(s,r1) ∧ 

SpatialLocation(e,r2) ∧ Part(r1,r2) 
(A18) ∀s,p. [Situation(s) ∧ Perdurant(p) ∧ SettingFor(s,p)] → ∃r1,r2,e. ReferencedSpatialLocation(s,r1) 

∧  Endurant(e) ∧ SpatialLocation(e,t2) ∧ Participant(p,e,t2) ∧ Part(r1,r2) 
 
Implicitly, (A13) to (A18) state that if a situation has an external temporal – respectively, 
spatial – location, that location is the mereological sum of the locations of the particulars in 
the setting. For example, the time of World War II might span from the German invasion of 
Poland in 1939 to the Yalta conference in 1945; its space might include most of the Earth 
surface. Hence, the setting relation is not temporalized, because the time of Setting(x,y) can 
be inferred from the previous axioms. 
Examples of situations, related to the examples of descriptions above, are: facts, desired 
states, plan executions, legal cases, diagnostic cases, attempted projects, performances, 
technical actions, system functioning, ecosystems, finished working products, etc. (Tab.1). 

 
Description Situation Description Situation 

Theory Model Diagnosis Diagnostic case 

Proposition Fact Project Project undertaking 

Relation Relationship Play Performance 

Belief  State of affairs Script Movie 

                                                             
7 All ‘t’’ variables in the formulas denote time intervals. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 42 of 140 

Desire (Desired) state Coding system Information encoding 

Plan Plan execution Communication rules Communication setting 

Workflow Work being done Technique (Technical) activity 

Legal Norm Legal case Instruction (Guided) activity 

Law of nature Fact in nature Rules of game Play a game 

Contract Contract enforcement System specification System functioning 

Product design Finished working product Constraints in an ecosystem Ecosystem 

 
Tab.1  Examples of classes of descriptions and corresponding classes of situations. 

 
Similarly to the conceives relation holding between agents and descriptions, which represents 
intentionality in its largest, cognitive sense, a sit-conceives relation holding between agents 
and situations is introduced to represent two assumptions: i) an agent can perceive an 
observable entitiy only based on some (conscious or not) intentionality, and ii) agents can 
have a relation to a situation without considering themselves in the setting of the situation, 
even when there exists at least one viewpoint according to which they are in that setting. 
In simpler terms, an agent can be in the setting of a situation, but the same agent can also be 
the conceptualizer of the situation based on its conceptualization skills.  
Notice that the circumstances of perception are not necessarily bound to the same 
circumstances of the conceived situation, since an agent can use a prosthesis, a recorded 
report, a witness, etc. Of course, the evaluation of perception (an epistemological issue) 
requires to take into account both the circumstances of the conceived and the perceived 
situations. 
The sit-conceives relation is introduced as follows: 
 

(A19) Sit-Conceives(x,y,t) → Agent(x) ∧ Situation(y) ∧ ∃z. Description(z) ∧ Conceives(x,z) ∧ 
Satisfies(y,z) 

(A20) Sit-Conceives(x,y,t) → SpecificallyConstantlyDependsOn(y,x) ∧ Agent(x) ∧ Situation(y)  
(A21) Sit-Conceives(x,y,t) → ∃z. Situation(z) ∧ SettingFor(z,x) 
(A22) DirectlySit-Conceives(x,y,t) → ∃z. Situation(z) ∧ SettingFor(z,x) ∧ Part(y,z) 

 
The axioms for Sit-Conceives do not provide necessary and sufficient criteria. They state that: 
i) situation conceptualization is mediated by conception, ii) a conceived situation is then 
specifically constantly dependent on the conceiving agent, iii) there exists at least one 
situation that provides the setting for the conceiving agent, iv) a direct sit-conceiving occurs 
when a perceived situation is part of the conceived one. (A22) does not make any claim about 
what kind of involvement is required from the agent to state that the circumstances of 
perception are part of the conceived situation: as a matter of fact, in different domains and 
communities, different criteria may apply. 
 
A Concept, like a description, is a non-agentive social object, which is defined by a 
description. Once defined, a concept can be used in other descriptions. We firstly introduce 
defined by as a subrelation of uses. Uses is the proper part relation holding between 
descriptions and concepts (A27) or figures (A30): 
 

(D6) Uses(x,y) =df ProperPart(x,y) ∧ Description(x) ∧ (Concept(y) ∨ Figure(y)) 
 
Defines is a subrelation of Uses. Defined concepts and figures specifically depend on defining 
descriptions: 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 43 of 140 

 
(A23) Defines(x,y) → Uses(x,y) ∧ SpecificallyDependsOn(y,x) 
(A24) Uses(x,y) → ∃z. Description(z) ∧ Defines(z,y) 

 
For example, a car design can define an engine role that can be restricted to classify only 
instances from a specified class of artifacts. 
The classifies relation relates concepts to particulars (and even concepts to concepts) at some 
time. There are several kinds of concepts reified in DnS, the primary ones (role, course, and 
parameter) being distinguished by the categories of entities they classify in DOLCE: 

 
(A25) Defines(x,y) → Description(x) ∧ Concept(y) 
(A26) Classifies(x,y,t) → Concept(x) ∧ Particular(y) ∧ TimeInterval(t) 
(A27) Concept(x) → NonAgentiveSocialObject(x) ∧ ∃y. Defines(y,x) ∧ Description(y) 
(D7) Role(x) =df Concept(x) ∧ ∀y,t. Classifies(x,y,t) → Endurant(y) 
(D8) Course(x) =df Concept(x) ∧ ∀y,t. Classifies(x,y,t) → Perdurant(y) 
(D9) Parameter(x) =df Concept(x) ∧ ∃y,t. Classifies(x,y,t) ∧ ∀y. Classifies(x,y,t) → Region(y) 
 

Examples of roles8 are: manager, student, assistant, actuator, toxic agent, etc. Examples of 
courses are routes, pathways, tasks, etc. Examples of parameters are: speed limits, allowed 
colors (e.g. for a certain book cover), temporal constraints, etc.  
There are relations between concepts. For example, some concepts are apparently classified 
by other concepts, e.g. a manager that is also a buyer. In most cases, however, they are not 
classified, but they are actually subconcepts (e.g. it’s not the role manager that actually plays 
the role buyer, but i’ts someone playing the role manager that is also playing the role buyer). 
The subconcept relation holds between concepts: 

 
(A28) SubconceptOf(x,y) → Concept(x) ∧ Concept(y) 

 
In particular, concepts can be specialized by other concepts, e.g. president of the Italian 
republic specializes president of republic9: 

 
(A29) Specializes(x,y) → SubconceptOf(x,y) 
(T1) ∀x,y,t.∃z. (Classifies(x,y,t) ∧ Specializes(x,z) ∧ x≠z) → Classifies(z,y,t) 
 

Figures, or social individuals (either agentive or not), are other social objects defined by 
descriptions; differently from concepts, however, they do not classify any particular: 

 
(A30) Figure(x) → SocialObject(x) 
(A31) Figure(x) → ∃y. Description(y) ∧ Defines(y,x) 
(A32) Figure(x) → ¬∃y,t. Classifies(x,y,t) 
 

Examples of figures are organizations, political-geographic objects, sacred symbols, 
personas, personal or shared façades, etc.  
 
Agentive figures are those which can conceive descriptions, by means of some agentive 
physical object that acts for the figure (for instance, as representative or delegate). 

 
(D10) AgentiveFigure(x) =df Figure(x) ∧ AgentiveSocialObject(x) ∧ ∃y. Description(y) ∧ 

Conceives(x,y,t) 

                                                             
8 There are additional axioms to characterize roles as anti-rigid and founded concepts. For definitions of anti-rigidity and of foundation, see 
[16]. 
9 Cf. [16] for more examples. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 44 of 140 

(A33) (AgentiveFigure(x) ∧ Conceives(x,y,t)) → ∃z,t. AgentivePhysicalObject(z) ∧ Conceives(z,y,t) 
 

Agentive figures are established by a society or community; hence, they can act like a 
physical agent, can play roles, etc.. In our ontology, this formally amounts to have at least two 
descriptions, one defining an agentive figure, and another defining a role played by that 
agentive figure: 

 
(A34) AgentiveFigure(x) → Figure(x) ∧ ∃y,z,w,t. Description(y) ∧ Role(z) ∧ Description(w) ∧ y≠w ∧ 

Defines(y,z) ∧ Defines(w,x) ∧ Classifies(z,x,t) 
 

Typical agentive figures are societies, organizations, and in general all socially constructed 
persons. 
Figures are not dependent on roles defined or used in the same descriptions in which the 
figures themselves are defined or used, but they can act because they depute some tasks to 
some of those roles, which, in turn, must classify some individual agent. In other words, when 
a figure is classified by some agentive role, or participates in some event, it can be classified 
or participate because there is someone (or something) that is classified by other roles in the 
descriptions that define or use the figure. The relation is temporalized in order to suggest that 
a figure can preserve its identity despite changes of deputed roles (even though there are cases 
in which the identity of a figure is inextricably bound to one - or more - of its roles): 

 
(A35) DeputedBy(r,f,t) → Role(r) ∧ Figure(f) ∧ TimeInterval(t) ∧ ∃c,d. Course(c) ∧ Description(d) ∧ 

Uses(d,r) ∧ Uses(d,f) ∧ Uses(d,c) ∧ ModalTarget(r,c,t) 
(A36) DeputedBy(r,f,t) → ∃r1,t1. Role(r1) ∧ Classifies(r1,f,t1) 
 

Those roles classify endurants, which result to act for the figure: 
 
(A37) ActsFor(e,f,t) → ∃r,t1. Role(r) ∧ DeputedBy(r,f,t1) ∧ Classifies(r,e,t) 
(A38) (ParticipatesIn(f,p,t) ∧ AgentiveFigure(f)) → ∃e. ActsFor(e,f,t) ∧ Participant(p,e,t) 
 

For example, an employee acts for an organization that deputes the role (e.g. turner) that 
classifies the employee. Simply put, a guy working as a turner at FIAT acts for (or on behalf 
of) FIAT, so that in actions classified by turning tasks, if FIAT participates, so necessarily 
does the turner. 
In complex figures, like organizations or institutions, a total agency is possible (usually 
limited to some actions), when an endurant plays a delegate or a representative role deputed 
by the figure10. Since figures are social objects, it can happen to find figures that act for other 
figures11. 
 
The classifies relation is specialized by three subrelations: played by, sequences, and valued 
by, which apply to three different categories in DOLCE (Endurant, Perdurant, and Region, 
from (D#-#))12: 

 
(D11) PlayedBy(x,y,t) =df Role(x) ∧ Classifies(x,y,t) 
(D12) Sequences(x,y,t) =df Course(x) ∧ Classifies(x,y,t) 
(D13) ValuedBy(x,y,t) =df Parameter(x) ∧ Classifies(x,y,t) 
 

                                                             
10 Cases of full delegation or representation, however, are quite unusual, and even prohibited in some legal contexts. 
11 Indeed, this kind of situation is at work in many contemporary settings and can reach great complexity, as e.g. in financial chinese boxes, 
which can even create an agency loop. 
12 Only three categories from DOLCE have been assigned a concept type at the descriptive layer, because the resulting  pattern is simpler 
and there is no loss of relevant knowledge, at least in applications developed until now. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 45 of 140 

Roles or figures and courses are related by relations expressing the modalities that (players 
of) roles and figures can have towards a course. The relation is temporalized to suggest that a 
description can preserve its identity against changes of the structure among components 
(though there can be mandatory structures for description identity): 

 
(A39) ModalTarget(x,y,t) → (Role(x) ∨ Figure(x)) ∧ Course(y) ∧ TimeInterval(t) 
 

Modal target is the descriptive counterpart of the “participant-in” relation used in the ground 
ontology, i.e. modalities are participation modes. In other words, the ModalTarget relation 
can be used to reify, for instance, alethic, epistemic, or deontic operators. For example, a 
person is usually obliged to drive in a way that prevents her from hurting other people; or a 
person can have the right to express her ideas. A subclass of modal-target relations 
representing dispositional attitudes (such as beliefs or desires) towards courses is called 
AttitudeTowards, and it holds only when roles are played by cognitive agents: 

 
(A40) AttitudeTowards(x,y,t) → ModalTarget(x,y,t) ∧ Task(y) ∧ TimeInterval(t)  ∧ ∀e. Classifies(x,e) 

→ CognitiveAgent(e) 
 

Consider, for instance, the following, more complex example: a BDI application to a certain 
ordered set of tasks including  initial conditions (beliefs), final conditions (desires), and ways 
to reach goals (intentions). In other words, moving from beliefs to goals is a way of bounding 
one or more agent(s) to a sequence of actions. In the plan ontology this intuition is deepened 
considerably. 
 
Parameters, roles, figures or courses are related by a requisite for relation, expressing the 
kind of requisites that particulars which are classified by roles or courses should have. The 
relation is temporalized to suggest that a description can preserve its identity against changes 
of structuring among components (though there can be mandatory structures for description 
identity): 

 
(A41) RequisiteFor(x,y,t) → Parameter(x) ∧ (Role(x) ∨ Figure(x) ∨ Course(y)) ∧ TimeInterval(t) 
 

Requisites are constraints over the values of the qualities of particulars. When a situation 
satisfies a description that uses parameters, endurants and perdurants that constitute the 
situation must have attributes that range between the boundaries stated by said parameters (in 
terms of DOLCE, particulars must have qualities that are mapped onto certain value ranges of 
regions). For example, if speed limit of 50kmph is a requisite for a driving task; a satisfying 
situation will have any speed of driving (e.g. in an instance of driving in Rome by car) to be 
less or equal to 50kmph. 
 
Collections are social objects (either agentive or not) which, although not defined by a 
description, (generically, one-sidedly, and temporarily) depend on member entities and 
(specifically, one-sidedly and constantly) depend on concepts, hence indirectly on 
descriptions; in some cases, collections can depend also on figures. While we could talk in 
general of collections of any kind of particulars (events, objects, abstracts, etc.), we focus here 
on collections of endurants, and therefore, on the concepts that classify them, i.e. roles.  
 

(D14) Collection(x) =df SocialObject(x) ∧ ∃r. Role(r) ∧ ∀w,t. GenericConstituentOf(w,x,t) → 
Classifies(r,w,t) ∧ ∃y,z,t1. Endurant(y) ∧ Endurant(z) ∧ y≠z ∧ GenericConstituentOf(y,x,t1) ∧ 
ConstituentOf(z,x,t1) ∧ Classifies(r,y,t1) ∧ Classifies(r,z,t1) 

 
A membership relation is defined on collections: 
 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 46 of 140 

(D15) Membership(e,c,t) =df GenericConstituentOf(e,c,t) ∧ Endurant(e) ∧ Collection(c) ∧ ∃r. Role(r) ∧ 
Classifies(r,e,t) 

 
In other words, a collection is a social object whose members are all classified by a same role, 
and which has at least two endurants as actual members. 
Two or more collections can be extensionally equivalent and still not be the same collection. 
Each collection needs a unifying description which provides its intensional identity criterion: 

 
(D16) ExtensionallyEquivalent(x,y,t) =df Collection(x) ∧ Collection(y) ∧ ∀z. Membership(z,x,t) ↔ 

Membership(z,y,t) 
 

The role shared by members has a covering relation towards the collection:  
 

(D17) Covers(r,c) =df Role(r) ∧ Collection(c) ∧ ∀w,t. Membership(w,c,t) → Classifies(r,w,t) 
 
Summing up, a concept is defined by a description and can classify some particular (a role 
being a concept that classifes only endurants), while a figure is defined by a description, but 
cannot classify any entity, and must act by means of something else. A collection, on the 
other hand, is not defined by a description, and cannot classify any particular, but has 
members that are classified by at least one and the same role (defined by some description). 
Figures and collections are social individuals, while concepts are not. We may say that 
collections are emergent social individuals because, unlike figures and concepts, they do not 
need to be explicitly defined by a description. 
 
Organized collections, however, introduce a different unity criterion for collections. They 
can be conceived as characterized by further roles played by some (or all) members of the 
collection, and related among them through the social objects (figures, descriptions, 
collections) that either use or depute or are covered by them: 
 

(D18) Characterizes(r,c) =df Role(r) ∧ Collection(c) ∧ ∃e,f,o,s,t. (Figure(o) ∨ Description(o) ∨ 
Collection(o)) ∧ Role(s) ∧ e≠f ∧ r≠s ∧ Membership(e,c,t) ∧ Membership(f,c,t) ∧ (Uses(o,r) ∨ 
DeputedBy(r,o,t) ∨ Covers(r,o)) ∧ (Uses(o,s) ∨ DeputedBy(s,o,t) ∨ Covers(s,o)) ∧ Classifies(r,e,t) 
∧ Classifies(s,f,t) 

(T2) Characterizes(r,c) → ∃s. Role(s) ∧ r≠s ∧ Characterizes(s,c) 
(D19) OrganizedCollection(c) =df Collection(c) ∧ ∃r,s. Characterizes(r,s) ∧ Characterizes(s,c) 

 
From previous definitions and theorems, we can claim that collections specifically depend on 
some description:  
 

(A42) Collection(c) → ∃d. Description(d) ∧ SpecificallyDependsOn(c,d) 
 
We can therefore build a new relation of unification between collections and the descriptions 
on which they depend. Unification is axiomatized by means of sufficient conditions (A35-37), 
and is not temporalized, since changing the description (differently from changing some 
members) creates a new collection: 
 

(A43) Unifies(x,y) → Description(x) ∧ Collection(y) 
(A44) Covers(x,y) → ∃d. Description(x) ∧ Defines(d,x) ∧ Unifies(d,y) 
(A45) Characterizes(x,y) → ∃d. Description(x) ∧ Defines(d,x) ∧ Unifies(d,y) 
(A46) (Characterizes(x,y) ∧ ∃f. DeputedBy(x,f,t)) → ∃d. Description(x) ∧ Uses(d,f) ∧ Unifies(d,y) 

 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 47 of 140 

From  (A23), (D8), (D15), (D18) and (A40) we can derive that a collection must be unified by 
at least one description, which provides to said collection its unity criterion:  
 

(T3) Collection(c) → ∃d. Description(d) ∧ Unifies(d,c) 
 
We can imagine roles that are used by, deputed by, or cover more than one description, figure, 
or collection13. In other words, characterizing roles can be related among them through some 
composition (or bundle) of descriptions, figures, or collections. We expect to extend our 
axiomatization to compositions and bundles in the near future. 
 
A collective is a collection of agents:  
 

(D20) Collective(c) =df Collection(c) ∧ ∀x,t. Membership(x,c,t) → Agent(x) 
 
Similarly to all collections, collectives are covered or characterized by roles and eventually 
unified by some description. In collectives, roles are played by agents. Since agents can 
participate in, and/or conceive, plans, roles can be assigned modalities or attitudes 
(participation modes) towards courses that can sequence actions. 
A typology of collectives will be introduced in next versions which mainly exploits the 
presence of a plan as the core unity criterion for a bundle of descriptions that originates 
collective action. The prior existence of this plan, its conceivability in the members of the 
collective, and the amount, the modes, and the types of existence and conceivability will be 
the criteria used to build our typology. 
 
3.3.4 Reified satisfaction in DnS 
 
In this section we try to answer the question: «how to formally represent the (possible, actual, 
obliged, desired, etc.) correspondence between situations and descriptions?». The basic 
semantics given in 3.3.2 simply states that reified tuples must satisfy reified relations. Here 
we build on that to see how that satisfaction can be introduced, checked, etc. 
 
(a) satisfaction 
 
The satisfies relation holds between situations and descriptions, and implies that at least some 
concept in a description must classify at least some particular in the situation setting (see 
3.3.2): 

 
(A47) Satisfies(x,y) → Situation(x) ∧ Description(y) 
(A48) Satisfies(x,y) → ∃z. Concept(z) ∧ Uses(y,z) ∧ ∃w,t. SettingFor(x,w) ∧ Classifies(z,w,t) 
 

For specialized descriptions additional constraints have to be given in order to reason over the 
satisfaction of candidate situations (see below the constraints for plans).  
 
(b) redundant satisfaction 
 
(A48) is quite generic and even counterintuitive from a logical viewpoint. This “relaxed” 
semantics for satisfaction needs explanation. 
In general, DnS does not constrain situations to include only individuals classified by the 
concepts of a description. In other words, reified satisfaction admits redundant situations.  

                                                             
13 Unifying descriptions of a collection can be: a) those which define covering or characterizing roles; and b) those which use said roles 
(defined elsewhere), but whose unifying function is explicitly stated. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 48 of 140 

Semantically, this means that a situation s can be a setting for individuals that are not 
constants from the tuple τ  reified by s. 
But if we assume that descriptions and situations are reifications of ≥2-ary predicates resp. 
tuples in those predicates, redundant situations appear to be logically rough, since non-reified 
tuples include only individuals belonging to classes defined for the predicate. 
On the other hand, real world uses of DnS are showing that most situations derive from other 
legacy situations that already have an internal structure, and modifying them with the sole 
purpose of getting non-redundant situations seems a bad practice. For example, a detective 
report (a description) can depict a situation that may contain useless information from the 
point of view of a certain legal rule (another description) but, to a certain extent, it is 
important to preserve the unity of the reported situation, instead of “cleaning” it up and 
making a new entity out of it, for the sake of merely complying to the legal-rule description. 
It is remarkable that the same practice usually applies to physical objects: provided that they 
respect some basic properties, any other property results acceptable. For instance, having dust 
on the rooftop is not usually relevant in order to recognize the model of a car, but it is 
nonetheless a property of the car, and it can be perceived and conceptualized by some persons 
(“uh, it’s a dusty 1968 Triumph TR4!”).14 
Under this assumption, the same situation can satisfy different descriptions that can even be 
unrelated. The formal consistency is given by the fact that legacy situations already satisfy 
other descriptions (e.g. they result fom the reification of a database view). 
 
(c) qualified satisfaction 
Moreover, DnS admits a qualified satisfaction: the set of concepts that “must” classify a 
particular in a situation can be explicitly stated by means of a set of axioms that specialize the 
satisfies relation for a certain domain. 
 
Summing up, reified satisfaction in DnS allows for situations that can be redundant on one 
hand (the respective non-reified models would be undecidable), and more restricted on the 
other hand (only certain non-reified models would be acceptable). But since reification allows 
a common domain for both ground and descriptive parts of an ontology, reified satisfaction 
does not lead to undecidability, and allows a custom design of the satisfiability conditions. 
 
The semantics of embedded contexts sketched in 3.3.2 is extended here to deal with redundant 
and qualified models.  
Roughly speaking, when dealing with e.g. an axiomatic theory T, a model M of T must 
[satisfy] (in the logical sense) the axioms of T, so that each individual is an instance of a class 
defined in T, and each tuple must be allowed by constraints encoded in the axioms of T. If a 
tuple in M generates a contradiction in T, M is not a model of T. If an individual in M is not 
an instance of any class in T, or a tuple in M involves individuals for whose classes no 
relation is defined in T, then M is undecidable in T. 
When moving to reification by extending an ontology augmented with DnS, satisfaction (in 
the reified sense) has some more possibilities:15 
 

• purely reified satisfaction: in this simple case, each individual i in a situation s must 
be classified by a concept c used in a description d, and for each DnS relationship 
dr(c1,c2) with c1 and c2 both used in d, no relationship gr(i1,i2) with  i1 classified by c1 
and i2 classified by i2, and both in s, can be incompatible with dr(c1,c2). No further 
individuals and relationships are allowed in s (Fig.4,5) 

 
                                                             
14 Similar remarks have been made in linguistics and philosophy works on event reification, starting at least from [Davidson 1968]. 
15 Actually, the same possibilities exist for [satisfies] in the logical sense, when a first-order theory is enriched with meta-level expressivity. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 49 of 140 

 
 

Fig. 4 Purely reified satisfaction is the reification of being a (valid) model M for a theory T: e.g. a is an instance of A, b is an 
instance of B, and the tuple a,b for the relation r conforms to the domain and range of R. 

 

 
 

Fig. 5 Purely reified satisfaction failing is the reification of failing to be a (valid) model M for a theory T: e.g. a is an instance of 
A, c is an instance of C, but the tuple a,c for the relation r does not conform to the range of R (B). 

 
• redundant reified satisfaction: in this case it is acceptable that there are individuals 

in s that are not classified by concepts in d, and/or relationships in s which do not 
correspond to DnS relationships between concepts in d (Fig.6) 

 

 
 

Fig. 6 Redundant reified satisfaction is the reification of being an undecidable model M for a theory T: e.g. a is an instance of A, 
but c and the tuple a,c for the relation r are undecidable within T, because the predicate C is not within its vocabulary. 

 
• structure matching satisfaction: in this case, each concept c used in a description d 

classifies an individual i in a situation s, and for each DnS relationship dr(c1,c2) with c1 
and c2 both used in d, there exists a relationship gr(i1,i2) with  i1 classified by c1 and i2 
classified by i2, and both are in s, which is compatible with dr(c1,c2). No further 
individuals and relationships are allowed in s (Fig.7) 

 

 
 

Fig. 7 Structure matching satisfaction is the reification of being a (valid) model M for a theory T: e.g. a is an instance of A, b is 
an instance of B, and the tuple a,b for the relation r conforms to the domain and range of R. But, differently from purely 

reified satisfaction, here each element in T has a correspondent in M. 
 

• qualified satisfaction: in this case, there is an explicit set of axioms that specifies 
what concepts c1...n used in a description d must classify individuals i1...n in a situation 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 50 of 140 

s, and for which DnS relationships dr1(c1,c2),..., drn(cn,cm) with cn and cm both used in d 
there must be a relationship gri(i1,i2) with  i1 classified by c1 and i2 classified by c2, and 
both are in s, which is compatible with dr1(c1,c2),..., drn(cn,cm). Further individuals and 
relationships are allowed in s. In other words,  some concepts and relationships in d 
are considered either optional, or discarded by decision (Fig.8) 

 

 
 

Fig. 8 Qualified satisfaction is similar to structure matching satisfaction, but some specified (e.g. optional tasks) elements in T 
have no necessary correspondence in M. 

 
With reference to these cases of satisfaction, DnS relies in general on redundant satisfaction 
between situations and descriptions, and also on qualified satisfaction for specialised 
descriptions, such as plans or diagnoses.  
Although this apparently allows the reification of undecidable models in a purely model-
theoretical sense, it is not actually so, because the parts of the models that do not correspond 
to any concepts or axioms in the description are nonetheless decidable within the so-called 
ground ontology.  
For example, if we have a model of the ground ontology that represents some guy with a red 
jacket driving his car at an excessive speed, and we add a legal regulation to the ontology, 
defining concepts for speed limits, driving, vehicles, and drivers, a situation can be 
constructed from that model whose individuals are classified by those concepts, except for red 
jacket, which is anyway decidable within the ground ontology. Therefore, no redundant entity 
or tuple in a situation can lead to undecidability, provided that those entities and tuples are 
decidable in the ground ontology. 
 
3.3.5 Satisfaction types 
 
The following (still preliminary) definitions introduce a basic typology for the satisfaction 
relation between situations and descriptions, leveraging on the semantical distinctions 
provided in 3.3.2 and 3.3.4.  
The three types introduced are: proactively satisfies (P-Satisfies), meaning that the situation 
has a pre hoc description, retrospectively satisfies (R-Satisfies), meaning that the situation 
has a post hoc description, and constructively satisfies (C-Satisfies) meaning that the 
situation has an ad hoc description: 
 

(A49) P-Satisfies(x,y) → Satisfies(x,y)  
(A50) R-Satisfies(x,y) → Satisfies(x,y) 
(A51) C-Satisfies(x,y) → Satisfies(x,y) 

 
Provided that the space-time of a situation is the mereological sum of the spatial and temporal 
regions of the particulars in the setting of a situation, we can figure out the following axioms 
for the *-Satisfies relations: 
  



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 51 of 140 

P-Satisfies assumes two of the satisfaction semantics presented above: redundant satisfaction 
and qualified satisfaction. In order to allow for a correct implementation of the qualified 
satisfaction, P-Satisfies requires that the description exists prior to at least some of the 
particulars in the setting of the satisfying situation. Ontologically, it results that P-Satisfies 
also implies a specific dependency of the situation on its description.  
P-Satisfies typically applies to plans, projects, designs, methods, techniques, rules of game, 
instructions, punishment rules, constitutive descriptions, sanctions, strategies, etc.: 
 

(A52) P-Satisfies(x,y) → ∃e. Particular(e) ∧ SettingFor(x,e) ∧ ∃t1,t2. PresentAt(e,t1) ∧ PresentAt(y,t2) 
∧ t2<t1 

(A53) P-Satisfies(x,y) → SpecificallyDependsOn(x,y) 
 
and, from the axioms for the situation space-time: 
 

(T4) P-Satisfies(x,y) → ∃t1,t2. PresentAt(x,t1) ∧ PresentAt(y,t2) ∧ t2<t1 
 
R-Satisfies also assumes redundant satisfaction and qualified satisfaction, but further 
assumes that the particulars in the situation entirely exist prior to the description. This seems 
paradoxical, since a description hardly motivates what happens if it is not conceived by any 
agent involved in things happening. For this reason, we postulate a so-called specific 
retrospective dependency (SRD), meaning that the creator of the description is willing to 
attribute the status of a (scientific or anyway well-founded) law to that description, despite the 
latter was not present before the situation.  
R-Satisfies typically applies to explanations that are considered as well-founded in science 
(physical, social, or cognitive), reverse engineering, criminal investigation, etc. Consider that 
the actual validity of the explanation is not addressed by the description, but by external 
evaluation descriptions: 
 

(A54) R-Satisfies(x,y) → ∀e,t1. (Particular(e) ∧ SettingFor(x,e) ∧ PresentAt(y,t1)) → ∃t2. 
PresentAt(e,t2) ∧ t2<t1 

(D21) SRD(x,y) =df SpecificallyDependsOn(x,y) ∧ ∃t1,t2. PresentAt(x,t1) ∧ PresentAt(y,t2) ∧ t1<t2 
(A55) R-Satisfies(x,y) → SRD(x,y) 

 
C-Satisfies - like R-Satisfies - concerns particulars that exist in a situation entirely prior to the 
description. Moreover, it assumes redundant satisfaction. But, differently from P-Satisfies 
and R-Satisfies, no qualified satisfaction is assumed. In fact, C-Satisfies implies no 
dependency of a situation on its description.  
C-Satisfies typically applies to different views of existing situations, as for regulative 
descriptions (disclaimer: the situation can be already created by complying to the regulation, 
e.g. executing it as a plan, but in this case there actually exists a plan that has the regulation as 
part), narratives, symbolic interpretations, etc.: 
 

(A56) C-Satisfies(x,y) → ∀e,t1. (Particular(e) ∧ SettingFor(x,e) ∧ PresentAt(y,t1)) → ∃t2. 
PresentAt(e,t2) ∧ t2<t1 

(A57) C-Satisfies(x,y) → ¬DependsOn(x,y) 
 
While each *-Satisfies subrelation has applications on typical kinds of descriptions, in 
principle they can apply also to less typical description types, for example a regulation can be 
used strictly as a plan, thus a situation P-Satisfies it. 
 
 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 52 of 140 

3.3.6 Execution 
 
Satisfies subrelations have interesting relationships to the execution of ontologies that contain 
descriptions of behaviors, methods, actions, etc. An ontology is executed when it is able to 
change or produce entities or data structures (in an open domain of discourse). 
Execution is related to the preliminary intuition of DnS as being the abstract specification of a 
system (system_as_description) and of its realizations (system_as_situation), while the real 
components and operations of a system ground those specifications into a substrate (physical, 
social, mental, computational). 
For example, the grounding of a plan into the components of a system will take into account 
that those components should allow for the enactment of a p-satisfying situation at runtime: in 
a physical system this amounts to have e.g. correct actuators; in a computational system it 
amounts to implement production rules, etc. 
A different example: the grounding for a regulation should allow for checking a c-satisfying 
situation: in a legal system, it amounts e.g. to compare social behaviors to required ones; in a 
computational system, it amounts to check the compliance between schemata and data 
structures. 
Still another different example: the grounding for an explanation should allow for either 
retrieving or simulating (previewing) an r-satisfying situation: in a physical system, it 
amounts e.g. to create the conditions for something to happen, and to check the 
reproducibility of a behaviour; in a computational system, it amounts to retrieving or mining 
data structures, or to create simulations. 
Another interesting application of *-Satisfies relations concerns the production of optimal 
descriptions according to available resources, a task addressed by either classical planning or 
problem-solving methods. In these cases, a relatively unordered legacy situation exists (it is 
presented by legacy systems or just by listing the elements), and an optimal plan should be 
produced that exploits the legacy situation according to a goal and some additional constraints 
and preferences. This could be described as a case of R-Satisfies from given elements of 
potential situations, which aims to discover a description equivalent to the best plan that can 
be p-satisfied by any new situation that includes those elements. 
In the following table, the satisfies types are summarized, with their typical applications and 
intuititive uses in the physical, social, and computational worlds: 
 

Description satisfaction Situation Physical Social Computational 

Plan p-satisfied by Execution Actuator Intention Production rule 

Regulation c-satisfied by Conformance Compliance Compliance Compliance 

Explanation r-satisfied by Recognition Phenomenon Behaviour Simulation 

 
 
3.4 The Plan Ontology 
 
The plan ontology depends on the DnS ontology, and specializes it with tasks, goals, P-
Satisfies rules, etc. 
Our intention is providing an ontology for the specification of social or cognitive plans, while 
we are not trying to characterize computationally executable plans. Neither we attempt at 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 53 of 140 

characterizing the planning task. Executable plans, as well as the planning task are e.g. 
characterized in the abovementioned “ontology of the planning task” [Rajpathak&Motta 
2004]. 
In order to provide a minimal intuition of the relation between social plans/tasks, and 
computational plans/tasks, we provide here a simple example. Suppose a student has to 
deliver a report on the Canto I in the Inferno part of Dante’s Comedy: he can decide a plan to 
produce the report, based on the reading of essays and critiques, direct reading of the Canto, 
consulting with teachers and friends, etc. The plan, once formalized with appropriate time 
sequences, roles, and parameters, will be a descriptive counterpart of the intention of the 
student to produce the report in a certain way. 
If the actions carried out by the student based on that plan will be compliant to it, such actions 
will constitute a plan execution (that can success or fail, be suspended, postponed, aborted, 
etc.). 
If we want to use that plan in an information system, it can be viewed as a set of requirements 
from the student. Now, a software engineer can take the requirements, and look for or 
implement software components that attempt at operationalizing the requirements. 
The first analysis from the software engineer could be: what requirements can be effectively 
supported computationally? If this analysis leads to assessing the operationalization as 
feasible, and relevantly so, the problem is now to integrate the software components so that 
they make up a useful and robust system. 
The second analysis could be: what resources can be found that can actually play the roles and 
tasks, according to parameters, of that plan? and are they computationally implementable? 
Once components and resources are integrated/collected, a more specific, circumstantiated 
plan can be produced by a planner.  
Back to the example, if an appropriate electronic agent acts for the student, if all documents 
are reachable by that agent, and if each action to produce a report can be executed by an 
electronic agent, such agents will be able to completely operationalize the student’s 
requirements. 
 
Bottom-line: software components, resources, and planners live in the world of computational 
plans, while social/cognitive requirements live in the cognitive agents’ world. In the ideal 
case, for each part of a requirement, a specific component implements the required 
functionality, finds all the resources needed, and a planner is able to compute a 
circumstantiated plan. The ideal case is not realistic, unless the social/cognitive plan is 
equivalent to an abstract algorithm to be applied on purely computational entities (with no 
intended reference to the social/cognitive world). For non-purely computational plans/entities, 
requirements will be overdetermined with respect to the abstract computational plan, and 
underdetermined with respect to the circumstantiated computational plan, but such cognitive 
plans will be anyway useful to characterize a plan independently from its (current) 
operationalization. 
This is also a disclaimer: our ontology of plans is not intended to substitute in any way the 
existing planning frameworks; on the contrary, it is complementary to them, because it aims 
at explicitating the dependencies between a set of domain-related assumptions, and the 
computational operationalization/optimization of a requirement-driven system. 
 
3.4.1 Plans and goals 
 
A plan is a description that is conceived by a cognitive agent, defines or uses at least one task 
(a kind of course of actions) and one role (played by agents), and has at least one goal as a 
proper part: 
 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 54 of 140 

(A58) Plan(x) → Description(x) 
(A59) Plan(x) → ∃y,t. Conceives(y,x,t) ∧ CognitiveAgent(y) 
(A60) Plan(x) → ∃y. Task(y) ∧ Uses(x,y) 
(A61) Plan(x) → ∃c. (Role(c) ∧ ∀a,t. Classifies(c,a,t) → Agent(a)) ∧ Uses(x,c) 
(A62) Plan(x) → ∃g. Goal(g) ∧ ProperPart(x,g) 

 
Examples of plans include: the way to prepare an espresso in the next five minutes, a 
company’s business plan, a military air campaign, a car maintenance routine, a plan to start 
a relationship, etc. 
A plan can have several proper parts (regulations, goals, laws), including other plans: 
 

(D22) Subplan(x) =df Plan(x) ∧ ∃y. Plan(y) ∧ ProperPart(y,x) 
 
If a plan uses a figure without defining it, and that figure is defined by a constitutive 
description, the plan specifically depends on the constitutive description:16 
 

(A63) ConstitutiveDescription(x) → Description(x) ∧ ∃y. Defines(x,y) ∧ Figure(y) 
(A64) [Plan(x) ∧ Figure(f) ∧ Uses(x,f) ∧ ∃y. ConstitutiveDescription(y) ∧ Defines(y,f)] → ∃t. 

GenericallyDependsOn(x,y,t) 
 
Of course, plans can directly define figures, e.g. some plans define temporary figures, such as 
teams or task forces, whose lifecycle starts and ends within the plan lifecycle. 
The notion of Goal is more complicated, due to the widespread polysemy it suffers from. 
Here a goal is considered to be a desire (another kind of description) that is a part of a plan.  
Desires in general are characterized as defining or using at least one role classifying an agent, 
and at least one course. The role is played by the agent in a desire mode towards the course: 
 

(A65) Desire(x) → Description(x) 
(A66) DesireTowards (x,y) → AttitudeTowards(x,y) 
(A67) Desire(x) → ∃y,t. Conceives(y,x,t) ∧ CognitiveAgent(y)  
(A68) Desire(x) → ∃y,z. (Role(y) ∧ ∀a,t. Classifies(y,a,t) → Agent(a)) ∧ Course(z) ∧ Uses(x,y) ∧ 

Uses(x,z) ∧ DesireTowards(y,z,t)  
 
For example, a desire to start a relationship can become a goal to start a relationship if 
someone takes action – or lets someone else take action on her behalf – with the purpose of 
starting the relationship. 
We are proposing here a restrictive notion of goal that relies upon its desirability by some 
agent, which not necessarily plays a role in the execution of the plan the goal is part of. For 
example, an agent can have an attitude towards some course defined in a plan, e.g. duty 
towards, which is different from desiring it (desire towards). We might say that a goal is 
usually desired by the creator or beneficiary of a plan. The minimal constraint for a goal is 
that it is a proper part of a plan: 
 

(D23) Goal(x) =df Desire(x) ∧ ∃p. Plan(p) ∧ ProperPart(p,x) 
 
A subgoal (relative to a plan) is a goal that is a proper part of a subplan: 
 

(D24) Subgoal(x,y) =df Part(x,y) ∧ Goal(y) ∧ Plan(x) ∧ ∃z. Plan(z) ∧ ProperPart(z,x) 

                                                             
16 This is a special case of the dependence of a description d on another description d’ that defines concepts or figures used in d. It is still 
under discussion is such dependence is specific or generic: for example, if a theory changes its identity, do its dependent theories change 
their identity as well? if no, dependence must be generic. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 55 of 140 

 
A main goal can be defined as a goal that is part of a plan but not of one of its subplans (i.e. it 
is a goal, but not a subgoal in that plan): 
 

(D25) MainGoal(p1,x) =df ProperPart(p1,x) ∧ Plan(p1) ∧ Goal(x) ∧ ¬∃p2. Plan(p2) ∧ 
ProperPart(p1,p2) ∧ ProperPart(p2,x) 

 
A goal is not necessarily a part of the main goal of the plan it is a subgoal of. E.g. consider the 
goal: being satiated; eating food can be a subgoal of the plan having being satiated as its main 
goal (see below), but it is not a part of being satiated. 
Nonetheless, we can also conceive of an influence relation between a goal and the main goal 
of the plan the first goal is a subgoal of: 
 

(D26) InfluenceOn(x,y) =df Goal(x) ∧ Goal(y) ∧ ∃z. Plan(z) ∧ Subgoal(z,x) ∧ MainGoal(z,y) 
 
It is also possible to represent the maximal goal of a plan, i.e. the sum of all goals that are 
parts of a plan: 
 

(D27) MaximalGoal(x,y) =df Plan(x) ∧ Goal(y) ∧ ∀z. [Goal(z) ∧ ProperPartOf(z,x)] → PartOf(z,y) 
 
By using the previous definitions, we can also define a disposition relation between the roles 
used in a plan having a main goal, and the influenced goal: 
 

(D28) DispositionTo(x,y) =df (Role(x) ∧ ∀a,t. Classifies(x,a,t) → Agent(a)) ∧ Goal(y) ∧ ∃p,g. Plan(p) ∧ 
Goal(g) ∧ ProperPart(p,g) ∧ Uses(p,x) ∧ InfluenceOn(g,y) 

 
For example, the role eater can have a disposition to being satiated, meaning that a person 
playing the role of eater that adopts that plan can act in order to be satiated. 
Disposition relation is useful to account for those cases in which a task addressed by a role is 
not internal to the plan, but the plan is a subplan of another one in which that course is 
represented as a full-fledged goal. 
 
In interesting cases, supergoals can be created in order to support the adoption of a subgoal.  
In order to describe these cases, we need to specialize the adoption relation. Goals and plans 
can be in fact adopted with different constraints: 
 

(D29) AdoptsGoal(x,y,t) =df Adopts(x,y,t) ∧ CognitiveAgent(x) ∧ Goal(y) ∧ ∀z. (Course(z) ∧ Uses(y,z)) 
→ DesireTowards(x,z,t) 

(D30) AdoptsPlan(x,y,t) =df Adopts(x,y,t) ∧ CognitiveAgent(x) ∧ Plan(y) 
 
In those interesting cases, given a plan and its main goal, e.g. some service to be delivered, it 
is a common practice to envisage the supergoals of the main goal that can be more clearly 
desirable from e.g. prospective users of a service (for example, a claim like the following 
generates a supergoal for the service’s goal: our service will improve your life). In these cases, 
goal adoption and plan adoption are taken as if the following theorem would be undebatably 
sustainable, i.e. that goal adoption implies adopting all its subgoals: 
 

(T5) ? (AdoptsGoal(x,y,t) ∧ Subgoal(y,z)) → AdoptsGoal(x,z,t) 
 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 56 of 140 

Amother disclaimer should be made on other apparently sensible axioms, e.g. that plan 
adoption implies the adoption of its main goal or of its subgoals. In particular the first one 
seems plausible in most cases, but in general social conditions, it is debatable: 
 

(A69) *? AdoptsPlan(x,y) → ∃z. MainGoal(y,z) ∧ AdoptsGoal(x,z) 
(A70) *? AdoptsPlan(x,y) → ∀z. SubGoal(y,z) → AdoptsGoal(x,z) 

 
Alternatively, goals can be directly represented by means of a relation: Goal(x,y) ranging on 
plans and desires. This solution would be formally closer to the classical BDI paradigm [19], 
by which, given a set of beliefs about a world (preconditions), and a desire towards another 
world (the goal state), an intention connects possible means to the desired world through a 
path (the plan), developed by following the so-called means-end reasoning. In other words, in 
BDI (but also in some PSMs) plans are tailored to the available entities in the world, 
according to some explicit constraints, preferences, optimal conditions, cost functions, etc. 
In DDPO there are similarities as well, because tailoring a plan in DDPO is equivalent to 
classifying entities from the ground ontology before starting an actual plan execution.  
On the other hand, DDPO implements the BDI paradigm differently, because DDPO reifies 
logical constraints, classes, and relations, and is therefore able to represent various level of 
abstractions. 
A DDPO plan can consist only of the constraints, preferences, cost functions, and restrictions 
over the classes of entities that can be classified in the plan execution: this is what we call an 
abstract plan (see below).  
While a tailored plan is equivalent in DDPO to a so-called circumstantial plan, namely a plan 
that specifies each entity that can be classified in the plan execution (together with the 
relations among those entities). 
Finally, a plan that specifies its spatio-temporal execution is a saturated plan. This is close to 
what classical planning calls schedule. 
 
These distinctions can be formalised as a typology of plans built according to their 
situatedness, i.e. according to how many variables are left open in the class of situations that 
can satisfy the plan. 
For example, an abstract plan is a plan whose roles and tasks only specify classes of entities 
that can be included in a plan execution. In other words, a component from an abstract plan 
does not classify any named entity. This condition cannot be formalized in FOL, since the 
following axiom: 
 

(A71) AbstractPlan(x) → Plan(x) ∧  ∀yz. ((Role(y) ∧ Uses(x,y)) → (Endurant(z) ∧ Classifies(y,z))) ∧ 
∀wk. ((Course(w) ∧ Uses(x,w)) → (Perdurant(k) ∧ Classifies(w,k))) 

 
only states general restrictions over plan components and situation elements. We need to 
express a condition by which an instance of an abstract plan specifies instances of plan 
components, but no instances of situation elements, e.g. that manager classifies some (if any) 
instance of person. 
 
A circumstantial plan has all components classifying named individuals from the ground 
ontology (e.g. only specific persons, specified resources, a finite number of time intervals and 
space regions, etc.): 
 

(D31) CircumstantialPlan(x) =df Plan(x) ∧  ∀y. (Concept(y) ∧ Uses(x,y)) → ∃z. Particular(z) ∧ 
Classifies(y,z)* 

 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 57 of 140 

*provided that z is a named entity, and not a skolemized individual (this is relevant only for the languages 
allowing skolemization btw). 

 
A saturated plan is a plan that cannot be executed twice, since it defines spatio-temporal 
parameters restricted to one value, e.g. one of its courses classifies an event that is valued by a 
definite temporal value in a definite space region: 
 

(D32) SaturatedPlan(x) =df Plan(x) ∧ ∃y,z. Parameter(y) ∧ Parameter(z) ∧ Uses(x,y) ∧ Uses(x,z) ∧ ∃t,s. 
ValuedBy(y,t) ∧ TimeInterval(t) ∧ ¬∃t1. TimeInterval(t1) ∧ ValuedBy(y,t1) ∧ t≠t1 ∧ 
ValuedBy(z,s) ∧ SpaceRegion(s) ∧ ¬∃s1. SpaceRegion(s1) ∧ ValuedBy(y,s1) ∧ s≠s1 

 
Of course, in the case of maximal spatio-temporal regions, a saturated plan tends to 
approximate an abstract plan from the execution viewpoint, but these worst cases are 
unavoidable when dealing with maximality.17 
 
Plan executions are situations that proactively satisfy a plan, meaning that the plan 
anticipates its execution (cf. definition of P-Satisfies above): 
 

(D33) PlanExecution(x) =df Situation(x) ∧ ∃y. Plan(y) ∧ Satifies(x,y) ∧ ∃t. PresentAt(y,t) ∧ 
¬PresentAt(x,t) 

 
Subplan executions are parts of the whole plan execution: 
 

(A72) ∀p1,p2,s1,s2. (Plan(p1) ∧ Plan(p2) ∧ ProperPart(p1,p2) ∧ Satifies(s1,p1) ∧ Satifies(s2,p2)) → 
ProperPart(s1,s2) 

 
A goal situation is a situation that satisfies a goal: 
 

(D34) GoalSituation(x) =df Situation(x) ∧ ∃y. Goal(y) ∧ Satifies(x,y) 
 
Contrary to the case of subplan executions, a goal situation is not part of a plan execution: 

 
(A73) GoalSituation(x) → ∀y,p,s. (Goal(y) ∧ Satifies(x,y) ∧ Plan(p) ∧ ProperPart(p,y) ∧ Satifies(s,p)) 

→ ¬ProperPart(s,x) 
 
In other words, it is not true in general that any situation satisfying a part of a description is 
also part of the situation that satisfies the whole description: 
 

(T6) ∀d1,d2,s1¬∀s2. (Description(d1) ∧ Description(d2) ∧ ProperPart(d1,d2) ∧ Satifies(s1,d1) ∧ 
Satifies(s2,d2)) → ProperPart(s1,s2) 

 
This helps to account for the following cases: 
 

• Execution of plans containing abort or suspension conditions (the plan would be 
satisfied even if the goal has not been reached, see below) 

• Incidental satisfaction, as when a situation satisfies a goal without being intentionally 
planned (but anyway desired). 

 
A precondition for a plan can be defined as a relation between a situation and a plan, 
implying that, for all plan executions of that plan to occur, a situation should preliminarily 
satisfy some description as well: 
                                                             
17 Suppose someone makes a plan of her life by stating a generic maxim, like in traditional wisemen’s suggestions. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 58 of 140 

 
(A74) Precondition(p,s) → Plan(p) ∧ Situation(s) 
(A75) Precondition(p,s) → ∀s1. (PlanExecution(s1) ∧ P-Satisfies(s1,p)) → (∃d. Satifies(s,d) ∧ 

Precedes(s,s1)) 
 
Notice that we do not exclude that s1 and s could have the same minimally common type (i.e. 
that they satisfy the same plan, i.e. that in practice we are characterising a cyclical plan). 
 
A postcondition for a plan can be defined as a relation between a situation and a plan, 
implying that, after plan executions of that plan occur, a situation should satisfy some 
description as well: 
 

(A76) Postcondition(p,s) → Plan(x) ∧ Situation(s) 
(A77) Postcondition(p,s) → ∀s1. (PlanExecution(s1) ∧ P-Satisfies(s1,p)) → (∃d. Satifies(s,d) ∧ 

Precedes(s1,s)) 
 
It often holds that the main goal situation is a postcondition of plans, but this is not 
mandatory. 
  
An accompanying condition (sometimes called ‘constraint’ in the planning literature) for a 
plan can be defined as a relation between a situation and a task (see below), implying that, for 
all plan executions of that plan to occur, a situation should satisfy some description as well, at 
the time of some specified perdurant that is sequenced by a task defined in the plan: 
 

(A78) AccompanyingCondition(p,s,t) → Plan(p) ∧ Situation(s) ∧ Task(t) 
(A79) AccompanyingCondition(p,s,t) → Defines(p,t) 
(A80) AccompanyingCondition(p,s,t) → ∀s1. (PlanExecution(s1) ∧ P-Satisfies(s1,p) ∧ s≠s1) → (∃d,e,i. 

Satifies(s,d) ∧ Perdurant(e) ∧ TimeInterval(i) ∧ Sequences(t,e,i) ∧ Setting(e,s1) ∧ Precedes(s,e)) 
 
3.4.2 Tasks 
 
Tasks are courses that are (mostly) used to sequence activities, or other perdurants that can be 
under the control of a planner. They are defined by a plan, but can be used by other kinds of 
descriptions. 
Tasks can be considered as shortcuts for plans, since at least one role played by agents has a 
“desire attitude” towards them (possibly different from the one that puts the task into action): 

 
(A81) DesireTowards(x,y,t) → AttitudeTowards(x,y,t) ∧ ∃e,d,t. Agent(e) ∧ Classifies(x,e,t) ∧ Uses(d,x) 

∧ Uses(d,y) ∧ Conceives(e,d,t) 
(D35) Task(x) =df Course(x) ∧ ∃y,z. Plan(y) ∧ Defines(y,x) ∧ (Role(z) ∧ ∀a,t. Classifies(z,a,t) → 

Agent(a)) ∧ Uses(y,z) ∧ DesireTowards(z,x,t) 
 
Tasks can be complex, and ordered according to an abstract succession relation. Tasks can 
relate to concrete actions or decision making; the latter deals with typical flowchart content. A 
task is different both from a flowchart node, and from an action or a class of actions. 
 
A scheduled task is a task that cannot be executed twice, since it has a temporal parameter 
restricted to one value, e.g. it classifies an event that is valued by a definite temporal value: 
 

(D36) ScheduledTask(x) =df Task(x) ∧ ∃y,i. Parameter(y) ∧ TimeInterval(i) ∧ RequisiteFor(y,x,i) ∧ ∃t. 
ValuedBy(y,t) ∧ TimeInterval(t) ∧ ¬∃t1. TimeInterval(t1) ∧ ValuedBy(y,t1) ∧ t≠t1 

 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 59 of 140 

For example, “pick me up at 3pm today” is a scheduled task. 
 
A complex task is a task that has at least two other tasks as components: 
 

(D37) ComplexTask(x) =df Task(x) ∧ ∃y,z. Task(y) ∧ Task(z) ∧ y≠z ∧ Component(x,y) ∧ 
Component(x,z) 

 
The primary ordering relation for tasks is direct successor; its transitive version is 

called successor. Notice that successor relations are abstract, and do not include a 
temporal ordering, although the usual correspondence within sequenced perdurants is a 
temporal relation (precedes or overlaps), and sometimes a causal relation. The distinction 
is clear when we consider two tasks having a direct successor relation holding for them, 
while the actions sequenced by them could temporally overlap: 
 

(A82) DirectSuccessor(x,y) → Particular(x) ∧ Particular(y) 
(A83) Successor(x,y) → Particular(x) ∧ Particular(y) ∧ ∀z,w,k. (DirectSuccessor(z,w) ∧ 

DirectSuccessor(w,k)) → Successor(z,k) 
 
DirectSuccessor is irreflexive, antisymmetric, and intransitive. Successor is irreflexive, 
antisymmetric, and transitive. 
 
Before analyzing types of complex tasks, we need to introduce the notion of control task, 
action task, etc. On the other hand, we make here forward references for the sake of 
homogeneity. 
 
A sequential task is a complex task that includes a successor relation among any two 
component tasks, and does not contain any control task (cf. (D44)): 
 

(D38) SequentialTask(x) =df ComplexTask(x) ∧ (∀y,z. (Component(x,y) ∧ Component(x,z) ∧ y≠z) → 
(Successor(y,z) ∨ Successor(z,y))) ∧ (¬∃w. Component(x,w) ∧ ControlTask(w)) 

 
For example, “eat your watermelon slice, then go playing games” is a sequential task. 
 
A hybrid task is a complex task that has at least one control task and one action task (cf. 
(D43)) as components: 
 

(D39) HybridTask(x) =df ComplexTask(x) ∧ ∃y,z. Component(x,y) ∧ Component(x,z) ∧ y≠z ∧ 
ControlTask(y) ∧ ActionTask(z) 

 
For example, “eat your watermelon slice, then - if you find a friend on the beach - go playing 
games” is a hybrid task. 
 
A bag task is a complex task that does not include neither a control task, nor a successor 
relation among any two component tasks: 
 

(D40) BagTask(x) =df ComplexTask(x) ∧ (¬∃y,z. (Component(x,y) ∧ Component(x,z) ∧ y≠z) → 
Successor(y,z)) ∧ (¬∃w. Component(x,w) ∧ ControlTask(w)) 

 
For example, “eat your watermelon slice, your cheese, look out that bee, take care to keep 
your shirt clean, stop jumping” is a bag task (said by an anxious parent …), since no 
particular ordering can be guessed, probably neither a concurrency. 
 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 60 of 140 

A maximal task is a complex task that has all the tasks defined in a plan as components: 
 

(D41) MaximalTask(x) =df ComplexTask(x) ∧ ∀y. (Task(y) ∧ Component(p,y)) → Part(x,y) 
 
An elementary task is a an atomic task: 
 

(D42) ElementaryTask(x) =df ¬∃y. Component(x,y) ∧ Task(y) 
 
An action task is an elementary task that sequences non-planning activities, like: moving, 
exercising forces, gathering information, etc. Planning activites are mental events involving 
some rational event: 
 

(D43) ActionTask(x) =df ¬∃y,i. Sequences(x,y,i) ∧ TimeInterval(i) ∧ PlanningActivity(y) 
 
For example, “eat your watermelon slice” is an action task. 
 
A control task is an elementary task that sequences a planning activity, e.g. an activity aimed 
at (cognitively or via simulation) anticipating other activities. Therefore, control tasks have 
usually at least one direct successor task (the controlled one), with the exception of ending 
tasks (see below): 
 

(D44) ControlTask(x) =df Task(x) ∧ (∀y,i. Sequences(x,y,i) → PlanningActivity(y) ∧ TimeInterval(i)) ∧ 
∃z. Task(z) ∧ DirectSuccessor(x,z) 

 
The reification of control constructs allows to represent procedural knowledge into the same 
ontology including controlled action. Besides cognitive transparency and independency from 
a particular grounding system, a further advantage offered by reification is to enable the 
representation of coordination tasks and their relation to roles defined in the same plan. 
For example, a manager that coordinates the execution of several related activities can be 
represented as a role with a responsibility (defined as a combination of duties and rights) 
towards a control task that has some complex task as a direct successor (or that is a 
component of a complex task). 
 
Individual control tasks are differentiated by their interrelations and application to actions 
they sequence. 
Loop task is a control task that has as successor an action (or complex) task that sequences at 
least two distinct activities sharing a minimal common set of properties (i.e., the activities 
have a minimal common type): 
 

(A84) ControlTask(LoopTask) → ∃y,z,w,i,j,P. Task(y) ∧ Action(z) ∧ Action(w) ∧ z≠w ∧ 
TimeInterval(i) ∧ DirectSuccessor(LoopTask,y) ∧ Sequences(y,z,i) ∧ Sequences(y,w,j) ∧ 
Precedes(z,w) ∧ MinimalCommonType(z,w,P) 

 
For example, “repeat the poem on and on” is a complex task controlled by the loop task. 
Notice that MinimalCommonType cannot be formalized as a first-order predicate, hence the 
more so in OWL-DL. It can, however, be considered as a basic guideline: «when sequencing 
looped actions, choose a definite action class from the ground ontology». 
Some relations typically hold when the loop task is used. Exit condition can be used to state 
what decision state (see below) causes to exit the cycle; iteration interval can be used to 
state how much time should be taken by each iteration of the looped activity; iteration 
cardinality can be used to state how many times the action should be repeated: 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 61 of 140 

 
(A85) ExitCondition(LoopTask,y) → DecisionState(y) 
(A86) IterationInterval(LoopTask,y) → TimeInterval(y) 
(A87) IterationInterval(LoopTask,y) → ∀z. (Action(z) ∧ Successor(LoopTask,z)) → 

TemporalLocation(z,y) 
(A88) IterationCardinality(LoopTask,y) → Integer(y)  

 
Cyclical task is a complex task that is composed by the loop task and the case task (cf. 
(A91)). The case task specifies the exit condition(s) of the cyclical task indirectly (only the 
decisions that do not have the cyclical task as successor are exit conditions), while loop task 
specifies which is the exit condition: 
 

(A89) ComplexTask(CyclicalTask) → DirectSuccessor(LoopTask,CyclicalTask) ∧ 
DirectSuccessor(CaseTask,LoopTask) ∧ Component(CyclicalTask,CaseTask) ∧ 
DirectSuccessor(CaseTask,DeliberationTask) ∧ Component(CyclicalTask, DeliberationTask) ∧ 
∃w. DecisionState(w) ∧ Sequences(DeliberationTask,w) ∧ ExitCondition(LoopTask,w) 

 
For example, “repeat the poem until you remember it smoothlessly” is a cyclical task. 
 
Branching task is a control task that articulates a complex task into an ordered set of tasks: 
 

(A90) ControlTask(BranchingTask) → ∃y,z. Task(y) ∧ Task(z) ∧ y≠z ∧ 
DirectSuccessor(BranchingTask,y) ∧ DirectSuccessor(BranchingTask,z) 

 
Case task is a specialization of a branching task branched to a set of tasks that are not 
executable concurrently. In order to choose the task to be executed, the preliminary 
deliberation task should be executed. The case task sequences a decision activity (a kind of 
mental event involving rationality) that has a decision state as outcome (sequenced by the 
deliberation task): 
 

(A91) ControlTask(CaseTask) → Specializes(CaseTask,BranchingTask) ∧ (∀y,i. 
Sequences(CaseTask,y,i) → DecisionActivity(y) ∧ TimeInterval(i)) ∧ 
DirectSuccessor(CaseTask,DeliberationTask) 

(A92) ControlTask(CaseTask) → ∃y,z,w,k. DecisionState(y) ∧ DecisionState(z) ∧ y≠z ∧ 
DirectSuccessor(CaseTask,DeliberationTask) ∧ Sequences(DeliberationTask,y) ∧ 
Sequences(DeliberationTask,z) ∧ ActionTask(w) ∧ ActionTask(k) ∧ w≠k ∧ 
DirectSuccessor(DeliberationTask,w) ∧ DirectSuccessor(DeliberationTask,k) ∧ ∀e1,e2,i,j. 
Perdurant(e1) ∧ Perdurant(e2) ∧ e1≠e2 ∧ TimeInterval(i) ∧ TimeInterval(j) ∧ Sequences(w,e1,i) 
∧ Sequences(k,e2,j) ∧ ¬Overlaps(e1,e2) 

(A93) ControlTask(DeliberationTask) → (∀y,i. (Sequences(DeliberationTask,y,i) → DecisionState(y) ∧ 
TimeInterval(i)) ∧ DirectSuccessor(CaseTask,DeliberationTask) 

 
For example, “if you find a friend on the beach, go playing games” are action tasks controlled 
by a case task and two deliberation tasks. 
 
Alternate task specializes the case task to exactly two executions of the deliberation task: 
 

(A94) ControlTask(AlternateTask) → Specializes(AlternateTask,CaseTask) ∧ ∃y,z. DecisionState(y) ∧ 
DecisionState(z) ∧ y≠z ∧ DirectSuccessor(CaseTask,DeliberationTask) ∧ 
Sequences(DeliberationTask,y) ∧ Sequences(DeliberationTask,z) ¬∃w. w≠y ∧ w≠z ∧ 
DecisionState(w) ∧ Sequences(AlternateTask,w) 

 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 62 of 140 

Concurrency task is a a specialization of a branching task branched to a set of tasks 
executable concurrently (the sequenced perdurants can overlap), which means that no 
deliberation task is executed in order to choose among them. Concurrency task has successor 
the synchronization (synchro) task, which is aimed at waiting for the execution of all 
(except the optional ones) tasks direct successor to the concurrent (or any order, see below) 
one: 
 

(A95) ControlTask(ConcurrencyTask) → Specializes(ConcurrencyTask,BranchingTask) ∧ ∃y,z. Task(y) 
∧ Task(z) ∧ y≠z ∧ DirectSuccessor(ConcurrencyTask,y) ∧ DirectSuccessor(ConcurrencyTask,z) 
∧ ∀e1,e2,i,j. Perdurant(e1) ∧ Perdurant(e2) ∧ e1≠e2 ∧ TimeInterval(i) ∧ TimeInterval(j) ∧ 
Sequences(y,e1,i) ∧ Sequences(z,e2,j)) → Overlaps(e1,e2) 

 
(A96) ControlTask(ConcurrencyTask) → Successor(ConcurrencyTask,SynchroTask) 

 
For example, “eat your watermelon slice, your cheese, but look out that bee” are action tasks 
controlled by a concurrency task. 
 

(A97) ControlTask(SynchroTask) → ∃t1,t2,t3. (t1=ConcurrencyTask ∨ t1=AnyOrderTask) ∧ 
Successor(t1,x) ∧ (ComplexTask(t2) ∨ ActionTask(t2)) ∧ (ComplexTask(t3) ∨ ActionTask(t3)) ∧ 
DirectSuccessor(t2,SynchroTask) ∧ DirectSuccessor(t3,SynchroTask) 

 
For example, “after you’ve eaten your watermelon slice and also talked to me frankly, we can 
go home” are action tasks controlled by a concurrency task and a synchronization one. 
 
Parallel task is a specialization of a concurrent task branching to at least two tasks that 
sequence temporally coinciding perdurants: 
 

(A98) ControlTask(ParallelTask) → Specializes(ParallelTask,ConcurrencyTask) ∧ ∃y,z. Task(y) ∧ 
Task(z) ∧ y≠z ∧ DirectSuccessor(ParallelTask,y) ∧ DirectSuccessor(ParallelTask,z) ∧ ∀e1,e2,i,j. 
Perdurant(e1) ∧ Perdurant(e2) ∧ e1≠e2 ∧ TimeInterval(i) ∧ TimeInterval(j) ∧ Sequences(y,e1,i) ∧ 
Sequences(z,e2,j)) → Coincides(e1,e2) 

 
Any-order task is a specialization of the branching task that defines no order in the successor 
tasks. This is another way of introducing a bag task,18 because any temporal relation can be 
expected between any two perdurants sequenced by the tasks that are direct successors to the 
any-order task: 
 

(A99) ControlTask(AnyOrderTask) → Specializes(AnyOrderTask,BranchingTask) ∧ ∃y,z. Task(y) ∧ 
Task(z) ∧ y≠z ∧ DirectSuccessor(AnyOrderTask,y) ∧ DirectSuccessor(AnyOrderTask,z) ∧ 
∀e1,e2,i,j. Perdurant(e1) ∧ Perdurant(e2) ∧ e1≠e2 ∧ TimeInterval(i) ∧ TimeInterval(j) ∧ 
Sequences(y,e1,i) ∧ Sequences(z,e2,j)) → TemporalRelation(e1,e2) 

(A100)  ControlTask(AnyOrderTask) → Successor(AnyOrderTask,SynchroTask) 
 
Beginning task is a control task that is the predecessor of all tasks defined in the plan: 
 

(A101)  ControlTask(BeginningTask) → ∀y,p. (Task(y) ∧ Plan(p) ∧ Component(p,BeginningTask) 
∧ Component(p,y) ∧ BeginningTask≠y) → Successor(BeginningTask,y) 

 
Ending task is a control task that has no successor tasks defined in the plan: 
 

                                                             
18 The difference is that a bag task is composed of any kind of tasks, while any-order task is a compound control task. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 63 of 140 

(A102)  ControlTask(EndingTask) → ∀p¬∃y. (Task(y) ∧ Plan(p) ∧ Component(p,EndingTask) ∧ 
Component(p,y) ∧ EndingTask≠y) → Successor(EndingTask,y) 

 
3.4.3 Satisfaction in DDPO 
 
The satisfies relation (as well as its subrelations) is usually constrained for special classes of 
descriptions (”qualified” satisfaction), in order to have necessary and sufficient conditions to 
infer it between a certain situation and a description. For plans, a preliminary axiomatization 
for P-Satisfies is provided here: 
 

(A103)  (P-Satisfies(x,y) ∧ Plan(y)) ↔ 
   { 
       [∀p. (Parameter(p) ∧ ∃t,i. Task(p) ∧ TimeInterval(i) ∧ RequisiteFor(p,t,i)) →   
   ∃r. ValuedBy(p,r) ∧ Region(r) ∧ SettingFor(x,r)] ∧  
       [∃c,o. (Role(c) ∧ PlayedBy(c,o)) ∧ (Figure(c) ∧ ActedBy(c,o)) ∧ Endurant(o) ∧  
         SettingFor(x,o)] ∧ 
       [∀t. ControlTask(t) →  
   ∃a,i. Sequences(t,a,i) ∧ Perdurant(a) ∧ TimeInterval(i) ∧ Setting(y,a)] ∧      
       [∀t. (ActionTask(t) ∧ ¬∃z. ControlTask(z) ∧ DirectSuccessor(z,t)) →  
   ∃a,i. Sequences(t,a,i) ∧ TimeInterval(i) ∧ Perdurant(a) ∧ SettingFor(x,a)] ∧ 
      [∀t. (ActionTask(t) ∧ DirectSuccessor(t,SynchroTask)) →  
   ∃a,i. Sequences(t,a,i) ∧ TimeInterval(i) ∧ Perdurant(a) ∧ SettingFor(x,a) ∧   
   ¬OptionallyUsedBy(t,y) ∧ ¬DiscardedWithin(t,y)] ∧ 
       [∃t,a. ActionTask(t) ∧ DirectSuccessor(BranchingTask,t) ∧ ∃a,i. Sequences(t,a,i) ∧  
     TimeInterval(i) ∧ Perdurant(a) ∧ SettingFor(x,a) ∧ ¬OptionallyUsedBy(t,y) ∧  
     ¬DiscardedWithin(t,y)] ∧ 
      [∃a,i. Sequences(EndingTask,a,i) ∧ Perdurant(a) ∧ TimeInterval(i) ∧ SettingFor(x,a)] 
   } 
 
Intuitively, we are suggesting that for a plan to be satisfied, we require that the following 
concepts classify some particular in the situation setting: i) all parameter for tasks, ii) at least 
one role,  iii) all control tasks, iv) all action tasks that are not bound by a control task, v) all 
action tasks bound by the synchronization task, except optional or discarded tasks, vi) at least 
one action task from any set bound by the branching task, vii) the ending task,  
 
Notice that we are not including the satisfaction of the plan’s goal among the P-Satisfies 
constraints for the plan (see above for the asymmetry between goal description and situation). 
This means that a plan can be satisfied even when its execution is aborted or suspended, 
provided that at least the ending task classifies a perdurant (e.g. decision to abort, to suspend, 
etc.). An additional model for control tasks can catch these notions: 
 

(S1)  ControlTask(AbortionTask) 
(S2)  Specializes(AbortionTask,EndingTask) 
(S3)  ControlTask(SuspensionTask) 
(S4)  Specializes(SuspensionTask,EndingTask) 
(S5)  ControlTask(CompletionTask) 
(S6)  Specializes(CompletionTask,EndingTask) 

 
Completion task requires that the goal of the plan has been satisfied, while in abortion and 
suspension tasks it is not required: 
 

(A104)  ∀p,e. (Plan(p) ∧ Uses(p,CompletionTask) ∧ PlanExecution(e) ∧ P-Satisfies(e,p)) → ∃g,s. 
GoalSituation(s) ∧ Goal(g) ∧ Satisfies(s,g) ∧ ProperPart(p,g) 

 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 64 of 140 

Of course, a plan execution can be aborted or suspended independently of an existing specific 
task ruling for that: these are properties of the situation, and usually prevent the plan 
execution to satisfy the plan (because the ending task couldn’t be reached). 
 
Additional notions and axioms catch stricter conditions expressible in plans: 
 
A task (as any other concept) can be optional within some plan (or any description). In this 
case, it can be ignored in plan execution without affecting the satisfaction of the plan: 
 

(A105)  OptionallyUsedBy(x,y) → UsedBy(x,y) ∧ Concept(x) ∧ Description(y) 
 
Within plans, an task said to be optional should be placed in a way that preserves the topology 
(the connectedness) of the maximal task, except for sequential tasks, where it can be skipped 
without affecting the control structure. In fact, an optional task must either be component of a 
bag or sequential task, or have the concurrent task or the any-order task as a direct 
predecessor: 
 

(A106)  (OptionallyUsedBy(x,y) ∧ Task(x)) → ∃z. [(BagTask(z) ∨ SequentialTask(z)) ∧ Uses(y,z) 
∧ Component(z,x)] ∨ [(z=ConcurrencyTask ∨ z=AnyOrderTask) ∧ Uses(y,z) ∧ 
DirectSuccessor(z,x)] 

 
For example, “eat your watermelon slice anyway you like, possibly without using your hands 
at all” are action tasks controlled by the concurrency task, and one of them is optional.  
 
A task can be discarded within some plan. In this case, it is ignored in plan execution without 
affecting the satisfaction of the plan. A discarded task can appear only as a direct successor to 
a deliberation task: 
 

(A107)  DiscardedWithin(x,y) → UsedBy(x,y) ∧ Task(x) ∧ Plan(y) 
(A108)  DiscardedWithin(x,y) → Component(y,DeliberationTask) ∧ 

DirectSuccessor(DeliberationTask,x) 
 
For example, “eat your watermelon slice, but if it stinks, stop” are action tasks controlled by a 
case task, and one of them leads to discarding the other one. 
 
A taxonomy of the tasks defined in the OWL-DL version of DDPO is shown in Fig.9. 
 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 65 of 140 

 
Fig. 9 Taxonomy of tasks in DDPO. Orange nodes represent completely defined OWL classes (having necessary and sufficient 

conditions). Yellow nodes represent partially defined OWL classes (having only necessary conditions). Arrows represent 
either subclass-of (IS_A) relations, or instance-of relations for control tasks. 

 
3.4.4 Plan composition 
 
It is possible to represent plan composition, when two plans which are defined separately 
should be joined under a common superplan. The primary components to be merged in plan 
composition are tasks. When the maximal tasks of two plans within the same plan are merged, 
the following operations can be performed: juxtaposition, sum, and product. Juxtaposition 
consists only in declaring which maximal task should be executed first: 
 

(D45) TaskJuxtaposition(x,y,z) =df MaximalTask(x) ∧ MaximalTask(y) ∧ x≠y ∧ DirectSuccessor(x,y) ∧ 
ProperPart(z,x) ∧ ProperPart(z,y) 

 
Sum consists in creating a task containing all the subtasks of the maximal tasks that are 
summed (no ordering is derivable from this operation): 
 

(D46) TaskSum(x,y,z) =df ∀w,k. (MaximalTask(x) ∧ MaximalTask(y) ∧ x≠y ∧ Task(w) ∧ Task(k) ∧ 
w≠k ∧ Component(x,w) ∧ Component(y,k)) → Component(z,w) ∧ Component(z,k) 

 
Product consists in adding some ordering to the sum: it results that, necessarily, each pair of 
action tasks from the two maximal tasks are either in a succession relation, or have a 
concurrency or any-order task as a direct predecessor: 
 

(D47) TaskProduct(x,y,z) =df ∀w,k. (MaximalTask(x) ∧ MaximalTask(y) ∧ x≠y ∧ ActionTask(w) ∧ 
ActionTask(k) ∧ w≠k ∧ Component(x,w) ∧ Component(y,k)) → (Component(z,w) ∧ 
Component(z,k) ∧ ((Successor(w,k) ∨ Successor(k,w)) ∨ (DirectSuccessor(ConcurrencyTask,w) 
∧ DirectSuccessor(ConcurrencyTask,k)) ∨ (DirectSuccessor(AnyOrderTask,w) ∧ 
DirectSuccessor(AnyOrderTask,k))) 

 
Once an operation on maximal tasks has been performed, further operations can be performed 
on roles and parameters. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 66 of 140 

 
Concepts and figures can be refined by adding components, e.g. an elementary task can 
become complex, a complex task can increase its complexity, maximal tasks can be 
composed, etc.: 
 

(A109)  Refines(x,y) → ProperPart(y,x) ∧ (Concept(x) ∧ Concept(y)) ∨ (Figure(x) ∧ Figure(y)) 
(A110)  TaskJuxtaposition(x,y,z) → (Refines(z,x) ∧ Refines(z,y)) 
(A111)  TaskSum(x,y,z) → (Refines(z,x) ∧ Refines(z,y)) 
(A112)  TaskProduct(x,y,z) → (Refines(z,x) ∧ Refines(z,y)) 

 
Consequently, descriptions can be expanded either by adding other descriptions as parts, or 
by refining their concepts or figures: 
 

(A113)  Expands(x,y) → ProperPart(y,x) ∧ Description(x) ∧ Description(y) 
(A114)  Expands(x,y) → (∃z. Description(z) ∧ PropertPart(x,z) ∧ ←PropertPart(y,z)) ∨ ∃w,k. 

Concept(w) ∧ Concept(k) ∧ Refines(k,w) ∧ UsedBy(k,x) ∧ UsedBy(w,y) ∧ ←UsedBy(k,y) ∧ 
←UsedBy(w,x) 

 
3.4.5 Further work 
 
Further work in DDPO will concentrate in the following areas: 
 

• Organizational concepts (e.g. from the Enterprise Ontology and from the Business 
Modelling literature): role hierarchies, types of figures, statuses, missions, etc. 

• On-the-fly definition of temporary figures and collectives (e.g. teams from the Klett 
case) 

• Optimality conditions for plans, when dealing with sparse resources 
• Strategies for plan accommodation (to circumstances) or adaptation (accommodation 

for reusability) 
• Cost-functions as definable within ontologies 
• … 

 
 

 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 67 of 140 

4 Reengineering Metadata Structures by means of DDPO 
 
This section illustrates a examples of how to use DDPO, the formal-ontological structure 
introduced in section 3. The main point is to illustrate for each example the threefold 
transition from a general description of a workflow, to an informal schematic representation 
of any given part of such workflow and, finally, to its formal characterization. 
 
Section 4.1 provides a first intuitive presentation and partial restructuring of the material 
about the KLETT case study. The original material underlying this section is contained in the 
following three source documents: “Business Models” by W. Volz, W. Maas et al. (Doc-1, in 
the following); “First Sketch” by W. Volz & J. Schmidt (Doc-2, in the following); “E-
learning Task Analysis” by Motti Benari (Doc-3, in the following). Section 4.1.1 presents an 
informal schema of both the Concept Design step and the Concept Development step in 
Klett’s workflow. This schema is then used in section 4.1.2 as a basis for the definition of a 
formal model, in terms of DDPO predicates and relations. 
 
Section 4.2 provides a first intuitive presentation and partial restructuring of the material 
about the Templeton Oxford Retail Futures Group (ORFG) case study. The original material 
is contained in the following source documents: “Use Case: Templeton Oxford Retail Futures 
Group (ORFG)” by P. Young (Doc-4, in the following); “Discussion Templeton College 
Business Models Templeton” by M. Schäfer (Doc-5, in the following); “It was agreed at the 
April review meeting” by. P. Young (Doc-6, in the following); “Minutes: Application 
Development Meeting” by P. Young (Doc-7, in the following); “Taxonomy Diagrams” by P. 
Young (Doc-8, in the following). Section 4.2.1 presents an informal schema of the plan 
Agenda. This schema as well as the general material presented in the introductory part to 
section 4.2 are used in section 4.2.2 as a basis for the definition of a formal model, in terms of 
DDPO predicates and relations. 
 
Section 4.3 provides a first intuitive presentation and partial restructuring of the material 
about the Clinical Trials case study. The original material is contained in the following source 
documents:… Section 4.3.1 presents…  
 

4.1 The KLETT case study 

KLETT Verlag is a German publishing house offering course material for different classes; it 
has 3 main products – schoolbooks for each school year; accompanying teaching material, 
e.g. history CD-ROMs; online learning material or programs - but the producing procedure 
and idea are nearly the same for all of them. 
As reported  in Doc-1, the Situations Design Methodology has been applied to an analysis and 
description of  the most typical situations involved in KLETT Verlag business. An important 
caveat is immediately needed here: the meaning of the term ‘situation’ as used in Doc-1 is 
different from the meaning given to this term in DDPO. In order to adhere to the terminology 
used in Doc-1 and, at same time, in order to avoid possible ambiguities with DDPO’s 
situations, from now on we write *SITUATION* for whatever in Doc-1 is referred to with the 
term ‘situation’. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 68 of 140 

Now, according to Doc-1 *SITUATIONS* are settings into the business environment (which 
includes all the relevant stakeholders for a given business); they represent the business. 
*SITUATIONS* informally refer to and are connoted by definitions given in three areas19: 
 

1. Social Sciences, where situations are human interaction patterns, by which persons 
judge and evaluate “the meaning of encounters” (Miller 1995) and have a clear view 
of their roles, rights and obligations. 

2. From Epistemology, where situations are common patterns which enable interacting 
people to share meaningful information and knowledge (because they participate in a 
“community of thought”, Fleck 1979). 

3. From Artificial Intelligence, where situations, as formalized in the Situation Calculus 
are “snapshots of the world at some instant” (McCarthy 2000), (the world being the 
environment of the business at hand). 

 
*SITUATIONS* are derived by developing a role-play for the business at hand; the key 
“actors” (i.e. stakeholders) are identified, then their roles are specified (in terms of duties, 
goals/motivations, rights, and obligations), and finally the participants “enact” the roles, 
rotating through each of them, so that they can understand the relative goals, etc. From this 
role-play, and the way the participants have described the interactions performed in order to 
achieve their goals, specific patterns and phases of interaction are derived. 
Typical *SITUATIONS* consist of: 
 

1. The environment the persons are acting in. 
2. The logical space (i.e., the structure of the content exchanged between agents, its 

syntax and semantics). 
3. The channels of interaction (telephone, e-mail, meetings, etc.). 
4. The organization/community (roles and artifacts involved). 

 
Other elements may be included, like e.g. the description of generic services supporting 
situations and interaction. 
 
In Doc-1 the following sequence of 5 *SITUATIONS* is identified, which describes in 
general how to develop new course material and provide it to schools: 
 
   concept development → data collection → editorial work → course preparation → mediation and e-learning 
 
Each *SITUATION* is described in terms of its key actor(s), their roles, duties, rights, 
obligations and tasks. It should be noticed that, as put in Doc-1, there are some overlaps 
and/or unclear distribution of information between these entries and that some of the entries 
are “nested”. For instance, the *SITUATIONS* Concept Development and Data Collection 
are organized as follows: 
 
 

*SITUATION*: Concept Development 
Actor 1: Project Manager 
Actor 2: Author(s) 

Where: 
Actor 1: 

                                                             
19From a DDPO point of view, 1 and 2 are better characterized as descriptions while 3 are 
situations. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 69 of 140 

Duties: co-ordinate the work with author(s) of educational material and check 
that material fits the syllabus of the different German Laender; responsible for 
pedagogical quality of final product and for marketing concept. 

Rights: request info about needs of the Laender; co-ordinate author(s); assign 
tasks to author(s); ask them status reports. 

Obligations: set the goals of training material (e.g. maths book 7th class). 
Tasks: decision on orientation of material; development of conceptions for 
material; elaboration of complete implementation concept (including 
marketing). 

Actor 2:  
see: *SITUATION*: Data Collection 

 
*SITUATION*: Data Collection 

Actor 1: Author 
Where: 

Actor 1: 
Duties: find and/or develop data for teaching materials 
Rights: access various information and data 
Obligations: deliver ready to use teaching material fitting the needs of the 
Laender 

Tasks: assembling of information; enrichment with pedagogical knowledge and 
methods according to the requirements set by the Project Manager 

 
 
During the Stuttgart Meeting with KLETT (see Doc-1), the typical internal workflow of 
KLETT’s production was roughly modelled as follows (note that this only partially matches 
the general workflows described above): 
 
   idea to develop course material → concept design → concept development → production → sales 
 
Two of the above *SITUATIONS* are of particular interest to Metokis: Concept Design and 
Concept Development. They occur only once the decision to develop new course material 
has been taken. Note that the steps in the complete workflows and the relative terminology are 
different in the 3 source documents and that they only partially match one another. The 
*SITUATIONS* Concept Design and Concept Development seem to correspond to Use Case 
1 (Business Plan Creation) and, respectively, Use Case 2 (Editorial Support) in Doc-2. On the 
other hand, the first three *SITUATIONS* correspond to the “Creation stage” as analysed in 
Doc-3. 
 
Section 4.1.1 presents an informal model of both the Concept Design and the Concept 
Development. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 70 of 140 

4.1.1 Schemas for Concept Design and Concept Development 

CONCEPT DESIGN: 
 
It is a proposal-generation situation, where an 
idea of developing new material is at hand 
and a development plan has to be elaborated, 
upon which a decision about actual 
development can be made. 

CONCEPT DEVELOPMENT: 
 
If the business plan is accepted, a pilot version 
of the new learning material is developed 
which can be directly produced. 

 
INTERACTION PHASES CONCEPT 
DESIGN 

 
INTERACTION PHASES CONCEPT 
DEVELOPMENT 

 
 

 
 
concept outline → 
 
 
technical description → 
 
 
production planning → 
 
 
financial planning → 
 
 
release 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 

 
 

 
 
 
project setup → 
 
 
content creation → 
 
 
technical implemetation → 
 
 
marketing concept → 
 
 
production launch → 
 
 
project finalization 

 
 
 

 
 
 
 
 

 
 
 
 
 
 

 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 71 of 140 

ROLES: 
 
• PROJECT MANAGER (PM): 
 

Duties/Responsibility: 
o compile the development plan 
 

Rights: 
o request information (from various 

other roles) 
o staff the project (involving other 

roles)  
o taking decisions on content and 

strategy 
 
 
 
 
Obligations: 

o compile a directly applicable 
development plan  

o organize and co-ordinate all other 
involved roles 

 
 
 

 
 

Goals/Motivation: 
o acquire a concept development 

project that leads to high profits 
for KLETT and thus (being then 
run by him) strengthens his 
position within KLETT) 

 
• TECHNICAL PROJECT MANAGER 

(TPM): 
 

Duties/Responsibility: 
o evaluate the technical perspective 

of the PM concept  
o represent the technical strategy of 

KLETT 
Rights: 
o be involved in development of new 

technical concepts, i.e. make 
suggestions on, and enjoin in, 
themes concerning technical 
details 

 
 

Obligations: 
o support the PM with technical 

decisions, i.e. provide info so that 
the right standards can be met and 
the right decisions can be made 

 
Goals/Motivation: 

ROLES: 
 
• PROJECT MANAGER (PM):  
 

Duties/Responsibility: 
o co-ordinate and plan steps of 

compilation of the new 
material 

Rights: 
o arrange duties with editors and 

authors  
o arrange duties and deliverables 

with programmers and 
technical project manager  

o request information about the 
status of work from involved 
staff  

o request support from 
assistant(s) concerning 
administration 

Obligations: 
o co-ordinate the compilation of 

new material  
- set tasks and relative deadlines to 

the editors and authors  
- control the project and 

adjust planning if delays 
occur  

- provide a ready-to-use 
version of material and 
deliver it to production 

Goals/Motivation: 
o produce high-quality material, 

because it is upon the 
performance of this material 
(once launched) that he will be 
measured 

 
• TECHNICAL PROJECT MANAGER 

(TPM): 
 

Duties/Responsibility: 
o supervise the production of 

new material from a technical 
point of view 

 
Rights: 

o be involved in all technical 
decisions concerning new 
material  

o declare technical standards for 
KLETT  

o share decisions with the PM on 
kind of technology used 

Obligations: 
o support the PM in technical 

decisions, i.e. provide info so 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 72 of 140 

 
 

 
To be included in Concept Design and Concept Development are the teams formed by some 
of the agents playing the roles. 
 
ORGANIZATION (TEAMS): 
 
The PM is responsible for the whole Concept 
Design. He forms several teams and 
subteams. 

ORGANIZATION (TEAMS): 
 
The PM is responsible for the whole Concept 
Develpment. He forms several teams and 
subteams. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 73 of 140 

TEAM TYPES 
 
• (EXECUTIVE) TEAM1 

Roles: 
o PM, Assistant(s) 
Functions:  
o organize Concept Design   
o elaborate business plan 
 

• (EDITORIAL) TEAM2 
Roles:  
o PM, 2 to 10 Editors 
Functions: 
o make all decisions regarding 

content of new material (implies 
responsibility for content) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
• SUBTEAM1 

Roles: 
o TEAM1, Organizational, 

Consultants(Controllers) [?] 
Functions: 
o [control tasks?] 

 
• SUBTEAMn 

Roles: 
o PM, each Editor, whole of TEAM2, 

Author(s), Consultant(s) 
Functions: 
o collaborate on decisions regarding 

content of new material 

TEAM TYPES 
 
• PROJECT MANAGEMENT TEAM1 

Roles: 
o PM + Assistant(s) 
Functions: 
o organize Concept Development   
o elaborate new material 

 
• CONCEPT DEVELOPMENT TEAM2 

Roles =  
o PM, 2 to 10 Editors 
Functions: 
o make all decisions regarding 

development of content of new 
material (implies responsibility for 
content developed) 

• TEAM3  
Roles:  
o PM, Technical PM 
Functions: 
o check concept development with 

technical details 
 
• TEAM4 

Roles: 
o PM, Production Manager 

[undefined within this plan] 
Functions: 
o countercheck concept development 

with production possibilities and 
deadlines for market launch 

 
• SUBTEAM1 

Roles: 
o TEAM1, Organizational, 

Consultants(Controllers) [?] 
Functions: 
o [control tasks?] 

 
• SUBTEAMn 

Roles: 
o PM, each Editor, whole of TEAM2, 

Author(s), Consultant(s) 
Functions: 
o collaborate on decisions regarding 

content of new material 

 
 

 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 74 of 140 

4.1.2 Formal Model 
The following is a model of a fragment of the examples introduced. Six plans with some of 
their defined tasks, roles, and parameters are formalized by means of DDPO classes and 
relations. 
The original material did not include clear decisions on task ordering (at the release time of 
version 1.0, Klett experts are still producing a revision including an ordering), then this model 
does not make a heavy use of DDPO predicates. 
Here we present the model in a FOL model syntax, while the Annex contains the model in 
OWL-RDF. 
 
Plan(producing_1_piece_of_new_learning_material) 
Plan(acquire_idea) 
Plan(concept_design) 
Plan(concept_development) 
Plan(production) 
Plan(sales) 
 
ProperPart(producing_1_piece_of_new_learning_material, acquire_idea) 
ProperPart(producing_1_piece_of_new_learning_material, concept_design) 
ProperPart(producing_1_piece_of_new_learning_material, concept_development) 
ProperPart(producing_1_piece_of_new_learning_material, production) 
ProperPart(producing_1_piece_of_new_learning_material, sales) 
 
Goal(bring_high_profits_to KLETT) 
ProperPart(producing_1_piece_of_new_learning_material, bring_high_profits_to KLETT) 
Goal(acquire_a_development_plan) 
ProperPart(concept_design, acquire_a_development_plan) 
Goal(develop_a_pilot_version_of_new_learning_material) 
ProperPart(concept_development, develop_a_pilot_version_of_new_learning_material) 
 
Task(decide_on_content) 
Task(provide_info_on_technical_standards) 
Task(provide_info_on_administrative_issues_regarding_content) 
Task(compile_development_plan) 
Task(disburden_project_manager) 
Task(set_deadlines_to_authors) 
Task(provide_content) 
Task(coordinate_compilation_of_new_learning_material) 
 
Component(concept_design, decide_on_content) 
Component(concept_design, provide_info_on_technical_standards) 
Component(concept_design, provide_info_on_administrative_issues_regarding_content) 
Component(concept_design, compile_ development_plan) 
Component(concept_design, disburden_project_manager) 
Component(concept_development, set_deadlines_to_authors) 
Component(concept_development, provide_info_on_technical_standards) 
Component(concept_development, provide_content) 
Component(concept_development, coordinate_compilation_of_new_learning_material) 
Component(concept_development, disburden_project_manager) 
 
AgentDrivenRole(project_manager) 
AgentDrivenRole(technical_project_manager) 
AgentDrivenRole(author) 
AgentDrivenRole(assistant) 
Role(standard) 
 
Component(concept_design, project_manager) 
Component(concept_design, technical_project_manager) 
Component(concept_design, author) 
Component(concept_design, assistant) 
Component(concept_design, standard) 
Component(concept_development, project_manager) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 75 of 140 

Component(concept_development, technical_project_manager) 
Component(concept_development, author) 
Component(concept_development, assistant) 
Component(concept_development, standard) 
 
RightTo(project_manager, decide_on_content) 
ObligationTo(project_manager, set_deadlines_to_authors) 
ObligationTo(project_manager, coordinate_compilation_of_new_learning_material) 
ObligationTo(technical_project_manager, provide_info_on_technical_standards) 
ObligationTo(author, provide_info_on_administrative_issues_regarding_content) 
ObligationTo(author, provide_content) 
DutyTo(assistant, disburden_project_manager)  
DutyTo(project_manager, compile_ development_plan) 
 
Parameter(right) 
RequisiteFor(right, standard) 
 

4.2 The Templeton Oxford Retail Futures Group case study 

The Templeton Oxford Retail Futures Group (ORFG) is a group of senior executives with 
links to retail that meets six times a year. The group is hosted by Templeton College. 
According to Doc-4 each meeting typically consists of: a presentation by an authority on a 
topic of interest to the group, a discussion on the presentation, a dinner and a chance to 
network and, if the presentation is off-site/not at Templeton, a guided tour. 
Furthermore, each year has one special CEO meeting, where a high-level (and possibly 
international) executive talks to the group. 
 
Members of the ORFG fall into 4 camps: Retail Executives, Non-Retail Executives, Retail 
Associations, Templeton & Oxford Institute of Retail Management (OXIRM). 
Others involved in the ORFG are: Speakers (who give presentations at the meetings. These 
may or may not be current ORFG members), Support (such as staff involved in organising the 
events), Potential New Members. 
 
Members of the ORFG join to get a better Individual understanding of and ability to advocate 
the future of retailing over the next 3-7 years. Moreover, each member has its own particular 
pay-off from participating in ORFG: Templeton improves its research and credibility, retail 
members improve their organisations operations and improve/sustain their credibility, Non-
retail members gain business development opportunities, Organisations gain more 
knowledgeable employees better equipped to plan and implement the organisation’s future 
retail-related strategy and operations. 
 
According to Doc-4, the ORFG system can be outlined as below. Notice that this scheme (as 
most of those picturing ORFG’s workflow in Docs-5to8) is very rich -- it provides valuable 
information -- but still too generic -- for instance: arrows are used homogeneously, i.e. 
ambiguously. Therefore, ontological analysis should in the first place be used to support 
disambiguation. 
 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 76 of 140 

 
Fig. 10 Outline of ORFG system 
 
According to Doc-4, there are three key (interrelated) areas: 
1. Content, including agenda, monitor, blackboard and access to presentation. Content 

supports: 
2. Actions, usually related to the organization of an event (a meeting), where one or more of 

the following are combined: speakers (for the presentation), venues (for the tour and/or 
presentation and/or dinner), invites. Actions support: 

3. People, are involved in one of the following ways: recruitment, monitoring and 
maintenance, member loss. People support content. 

 
This way of describing things is a little shallow, especially for what concerns the use of the 
“support” relation, which has arguments that are ontologically disparate. 
 
In order to structure, according to DDPO, the knowledge presented so far, one should proceed 
top-down and give an explicit definition of ORFG’s Plan, Sub-plans, Roles.  
One way of doing this is by simply defining ORFG’s plan as to meet 6 times a year. Retail 
and non-retail executives, Oxirm, retail associations, speakers, supporting stuff and potential 
new members pursue, each according to their role, the goal of this plan: enhance members’ 
understanding of the retail sector. At same time, by playing a role in ORFG’s plan, each 
member takes care of its own backyard: for instance, Oxirm has a disposition to improve 
research and credibility; retail associations have a disposition to improve operations and 
credibility; etc. ORFG’s plan entails at least the following four plans: make agenda, monitor 
literature, manage blackboard, organize single event, keep relations with people. Each of 
these sub-plans has, besides its own sub-plans and roles, a number of tasks, i.e. a number of 
actions to be performed in order to get the job done. In the following section, an example is 
provided of the task structure of the plan make agenda, as presented in Doc-4. The three other 
sub-plans are schematized in a similar fashion. 

4.2.1 Schema for Agenda 
The goal of the plan make agenda is to have a decided agenda for the next year’s 6 meetings. 
The following tasks are involved: identify known events, choose topics to fit members’ 
interests, validate topics, identify speakers, choose speakers to fit topics, validate speakers, 
publish agenda. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 77 of 140 

1. Identify known events. Retail sector events in the coming year that are known to be 
happening are identified. Examples may be “academic”, such as key research publication 
dates (e.g. DTI & Productivity report), or “industry”, such as the opening of the 
Birmingham Bull Ring. The final meeting, in which a CEO gives a talk at Templeton, is 
also marked. 

2. Choose topics of interest. Informal discussions are held between Templeton and Retail 
members to gauge what the main topics of interest are. This is supported by an informal 
discussion document. Once agreed a formal “yes/no/what else” document is sent to all 
ORFG members for their feedback. Once feedback has been received, an outcome 
discussion document is written detailing the chosen topics. 

3. Validate topics. At the same time as the topics are being chosen, Templeton and the 
ORFG validates the topics to make sure that the final list conforms to various constraints. 
These constraints are: Community management (ensuring members are happy with 
topics), Breadth of focus (ensuring all topics are equally addressed), Breadth of location 
(ensuring meetings are split between Templeton and other venues) That previous or “old” 
topics are readdressed as major changes occur. 

4. Choose speakers. Once the topics have been chosen, Templeton searches for speakers to 
talk on each topic. Speakers are found through searching: The ORFG community (who 
they know) news & media. 

5. Validate speakers. As with the topics, at the same time as the speakers are being chosen, 
Templeton validates the choices to make sure that the final list conforms to various 
constraints. These constraints are: Focus (ensuring that the speakers are mainly from retail 
and that, where possible, there are no suppliers as speakers). Breadth of background 
(ensuring a counterbalance between academic and corporate views) 

6. Publish agenda. Once topics and speakers have been finalised, the agenda is sent to all 
ORFG members. 

4.2.2 Formal Model 
The following is a model of a fragment of the material introduced above. Both ORFG general 
plan and the plan make agenda are modelled by means of DDPO classes and relations. Here 
we present the model in a FOL model syntax, while the Annex contains the model in OWL-
RDF. 
 
Plan(meet_6_times_a_year) 
Plan(make_agenda) 
Plan(monitor_literature) 
Plan(manage_blackboard) 
Plan(organize_single_event) 
Plan(keep_relations_with_people) 
 
ProperPart(meet_6_times_a_year, make_agenda) 
ProperPart(meet_6_times_a_year, monitor_literature) 
ProperPart(meet_6_times_a_year, organize_single_event) 
ProperPart(meet_6_times_a_year, keep_relations_with_people) 
 
Goal(enhance_members’_understanding_retail_sector) 
ProperPart(meet_6_times_a_year, enhance_members’_understanding_retail_sector) 
Goal(improve_research_and_credibility) 
InfluenceOn(enhance_members’_understanding_retail_sector, 
                                                  improve_research_and_credibility) 
Goal(improve_operations_and_credibility) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 78 of 140 

InfluenceOn(enhance_members’_understanding_retail_sector, 
                                                 improve_operations_and_credibility) 
Goal(gain_business_opportunities) 
InfluenceOn(enhance_members’_understanding_retail_sector, gain_business_opportunities) 
Goal(gain_more_knowledgeable_employees) 
InfluenceOn(enhance_members’_understanding_retail_sector, 
                                             gain_more_knowledgeable_employees) 
 
AgentDrivenRole(retail_executive) 
AgentDrivenRole(non_retail_executive) 
AgentDrivenRole(speaker) 
AgentDrivenRole(supporting_staff) 
AgentDrivenRole(potential_new_member) 
AgentDrivenRole(representative) 
AgentDrivenRole(oxirm_representative) 
Specializes(representative, oxirm_representative) 
Institution(oxirm) 
Deputes(oxirm, oxirm_representative) 
∀x,y. (RetailAssociation(x) ∧ Deputes(x,y)) → y = retail_association_representative) 
AgentDrivenRole(retail_association_representative) 
Specializes(representative, retail_association_representative) 
RetailAssociation(x) → Institution(x) 
 
Component(meet_6_times_a_year, retail_executive) 
Component(meet_6_times_a_year, non_retail_executive) 
Component(meet_6_times_a_year, retail_association_representative) 
Component(meet_6_times_a_year, oxirm_representative) 
Component(meet_6_times_a_year, speaker) 
Component(meet_6_times_a_year, supporting_staff) 
 
DispositionTo(oxirm, improve_research_and_credibility) 
DispositionTo(retail_associtation, improve_operations_and_credibility) 
DispositionTo(non_retail_executive, gain_business_opportunities) 
DispositionTo(oxirm, gain_more_knowledgeable_employees) 
DispositionTo(retail_associtation, gain_more_knowledgeable_employees) 
 
Goal(having_a_decided_agenda) 
ProperPart(make_agenda, having_a_decided_agenda) 
 
Component(make_agenda, oxirm) 
Task(identify_known_events) 
Task(choose_topics_to_fit_members_interest) 
Task(validate_topics) 
Task(identify_speakers) 
Task(choose_speakers_to_fit_topics) 
Task(validate_speakers) 
Task(publish_agenda) 
 
Defines(make_agenda, identify_known_events) 
Defines(make_agenda, choose_topics_to_fit_members_interest) 
Defines(make_agenda, validate_topics) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 79 of 140 

Defines(make_agenda, identify_speakers) 
Defines(make_agenda, choose_speakers_to_fit_topics) 
Defines(make_agenda, validate_speakers) 
Defines(make_agenda, publish_agenda) 
 
Role(known_event) 
Subject(known_event, identify_known_event) 
Parameter(current) 
RequisiteFor(current, known_event) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 80 of 140 

5 An ontology of information objects 
Currently, the proposed ontology for information objects is reused from an extension of 
DOLCE, but future versions of the deliverable will customize it to the needs of Metokis use 
cases. Part of the reused ontology has been developed within the WonderWeb EU project 
[15][17][14][10]. 

5.1 The basic IO design pattern 

According to the reused ontologies mentioned in previous sections, a content (information) 
transferred in any modality is assumed to be equivalent to a kind of social object called 
information object (IO). Information objects are spatio-temporal reifications of pure 
(abstract) information as described e.g. in Shannon’s communication theory, hence they are 
assumed to be in time, and realized by some entity. 
Information objects are the core notion of a semiotic ontology design pattern, which employs 
typical semiotic relations, as explained here. 
An IO has the following properties (Fig.11): a support that realizes the IO, one or more 
combinatorial structure(s) (or information encoding system), according to which IO is 
ordered, a meaning (or conceptualization) that an IO expresses, a reference an IO is about, 
and one or more agents that interpret the IO (see [20] for a review of the relations between 
ontology and semiotics, and a similar account of semiotic relations): 
 

(A115)  InformationEncodingSystem(x) → Description(x) 
(A116)  InformationObject(x) → SocialObject(x)  
(A117)  InformationObject(x) → ∃y. InformationEncodingSystem(y) ∧ OrderedBy(x,y)  
(A118)  InformationObject(x) → ∃y. Particular(y) ∧ RealizedBy(x,y,t) 
(A119)  InformationObject(x) → ∀y. Expresses(x,y,t) → Description(y) 
(A120)  InformationObject(x) → ∀y. About(x,y,t) → Particular(y)  
(A121)  InformationObject(x) → ∀y. Interprets(y,x,t) → Agent(y) 

 
For example, Dante’s Divine Comedy is an IO, it is ordered by Middle Age Italian language 
(the information encoding system), is realized by e.g. a paper copy of the 1861 edition with 
Doré’s illustrations, expresses a certain plot and its related meanings (literal or metaphorical), 
as interpreted by an agent with an average knowledge of MA Italian and literary criticism, 
and it is about certain entities and facts (Fig. 11). 
 

 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 81 of 140 

Fig. 11 The basic IO design pattern 
 
Therefore, we are assuming the following functional reductions: meanings (independently of 
how a meaning is theorized: as a mental content, intertextual reference, propositional content, 
etc.) can be partly formalized as descriptions; supports are particulars of some kind (e.g. a 
paper sheet, a sound, a sequence of bits or pulses, etc.); referenced particulars are particulars 
whatsoever (usually set in situations that satisfy an expressed description); interpretations of 
IOs are confined to endurants that can (directly or indirectly) conceive descriptions: agents. 
IOs are necessarily encoded by some information encoding system, and must be realized by 
some particular. IOs can express a description, and if that description is satisfied by a 
situation, IOs can be about it. Finally, IOs can be interpreted by agents that can the 
description expressed by said IOs. 
This theory is compliant with so-called communication elements (roles) defined by Jakobson 
[21]: an information object works as a message, an information encoding system as a code, a 
supporting entity acts as channel, an interpreting agent works as an encoder or decoder, and 
an expressed description as a context. 
Among the semiotic relations used above to create the IO pattern are the following: 
 

(A122)  Orders(x,y) → InformationEncodingSystem(x) 
(A123)  Realizes(x,y,t) → Particular(x) 
(A124)  Expresses(x,y,t) → Description(y) 
(A125)  About(x,y,t) → Particular(x) 
(A126)  Interprets(x,y,t) → Agent(x) 

 
The relations realizes, expresses, about, and interprets must be taken as temporally indexed. 

5.2 Advanced paths in the IO pattern 

These semiotic relations constitute a typical ontology design pattern, so that any composition 
of relations can be built starting from any node in the pattern or in an application of the 
pattern.  
The pattern has also some required paths (Fig. 12): 
 
i) for any description, it is mandatory to have at least one IO that expresses it: 
 

(A127) Description(x) → ∃y. InformationObject(y) ∧ ExpressedBy(x,y,t)  
 
ii) interprets implies that an expressed description is conceived by the agent (i.e., when an 
agent interprets an IO, it conceives the description expressed by the IO; of course two agents 
can conceive different descriptions, then resulting in different interpretations): 
 

(A128) Interprets(x,y,t) → ∃d. Description(d) ∧ Expresses(y,d,t) ∧ Conceives (x,d,t) 
 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 82 of 140 

 
Fig. 12 The IO pattern with some implied paths: situations exist for the setting of realization, as well as aboutness; agents refer to 

particulars that interpreted IOs are about, etc. 
 
iii) another axiom can be proposed about the need of one description and (at least) one 
situation so that an IO be about something. Given that descriptions are expressed by at least 
one IO, and that interpretations of IOs require both conceiving a description and the 
(plausible) claim that being about something can only be done in context, i.e. within a 
situation), we can propose that the conceived description is satisfied by the situation (the 
context) of the particular the IO is about: 
 

(A129)  About(x,y,t) ↔ ∃d,s. Description(d) ∧ Expresses(x,d,t) ∧ Situation(s) ∧ SettingFor(s,y) ∧ 
SAT(s,d) 

 
iv) the previous axiom makes a move to “negotiated reference”, i.e. agents refer to particulars 
by conceiving a description appropriate to the given context: 
 

(A130)  RefersTo(x,y,t) → Agent(x) ∧ Particular(y) ∧ ∃z,d. InformationObject(z) ∧ Description(d) 
∧ Interprets(x,z,t) ∧ Expresses(z,d,t) ∧ About(z,y,t) 

 
v) IOs can be realized by any sort of entities, provided that the structure of the entity is such 
that the ordering of an IO is properly mapped. On the other hand, an IO can be about any sort 
of entities, provided that the entity can be situated into a situation that satisfies a conceivable 
description.20 Possibly, this twofold nature of entities wrt to semiotic properties accounts for 
the enormous expressive power of e.g. human information encoding systems: humans use the 
world to map (represent) the world, including themselves, and the “legacy” structure of the 
world is exploited or modified in order to gain even more power, in a game that leads to many 
layers of abstraction. 
Entities (may) reveal information realized by their own, as well as other information realized 
by them, but not proper of their own. The second revealing requires a mapping (or 
representation) context, the first does not. For example, a (traditional, figurative) painting of a 
landscape realizes a picture, which is about that landscape, but it also “exhibits” its own 
structure (information), which can be appreciated. Hence, there is a sense in which any entity 
that realizes an IO also realizes an IO about itself: 

                                                             
20 In principle, any IO can be about any entity, but social conventions, usage history, and various iconical or economical reasons actually 
limit conceivability and expressibility. Most of the literature in philosophy of language and semiotics accounts for these issues; Eco 1997 has 
a long section precisely on these limits (cf. [21]. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 83 of 140 

 
(A131)  Realizes(x,y,t) → ∃z. About(z,x,t) ∧ Realizes(x,z,t) 

 
For example, a painting realizing information about a woman also realizes information about 
itself.  
If one wants to consider an entity as inherently semiotic, when in the domain of an ontology, 
then the axiom above needs to be complemented by y≠z. 
Of course, the converse of the previous axiom does not hold in general: 
 

(A132)  * About(x,y,t) → ∃z. Realizes(z,x,t) ∧ About(x,z,t) [ ∧ y≠z ] 
 
For example, the information about a woman can be realized by entities that are different 
from the woman in question (as when referring to an absent woman).  
In other words, an entity (when considered in a semiotic perspective) always realizes two 
information objects: one about itself, and another about something else. In the non-semiotic 
cases, the two information objects are identical (an entity only realizes information about 
itself). 
We could propose that entities, once they have a relevance in a society, can have semiotic 
properties. Even physical artifacts that are not built primarily for communicative purposes – 
e.g. a chair – can be considered as realizing some IO that expresses a design description, and 
that is about a context (situation) of use, fruition, or just affordance that satisfies the design.  
Of course, the aboutness of IOs realized by physical artifacts is peculiar, since they are more 
evidently about the artifacts themselves than about the context; while, on the contrary, the 
“intrinsic” aboutness of IOs realized by typical semiotic artifacts (texts, pictures, voice) is less 
evident, with the notable exception of artistic realizations. 
The Comedy example sketched above can be refined with the paths embedded in the IO 
design pattern (Fig. 13).  
 

 
Fig. 13 A model about Comedy using the extended IO design pattern. 
 
 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 84 of 140 

5.3 Using the IO design pattern 

As a summary, we can conceive of a maximal semiotic relation S, and its projections: 
 

(D48) S(e,io,c,a,d,n,t) =df Particular(e) ∧ InformationObject(io) ∧ InformationEncodingSystem(c) ∧ 
Agent(a) ∧ Description(d) ∧ Particular(n) ∧ Realizes(e,io,t) ∧ OrderedBy(io,c) ∧ Interprets(a,io,t) 
∧ Expresses(io,d,t) ∧ About(io,n,t) 

 
In practice, the maximal semiotic relation is defined after the axioms provided for its 
projections.  
 
An interesting case of semiotic entrenchment has appeared in (computational) knowledge 
representation (KR). Computational (software) domain has a reality of its own, consisting of 
symbols (that are abstract regions in DOLCE) that are manipulated (ordered) by programs 
that can implement algorithms.  
KR techniques have introduced the practice of distinguishing the symbols (called concrete 
data types, or simply data types, e.g. in OWL) that can be computed as such by the program 
or by additional programs, and the symbols (called abstract data types, or objects, e.g. in 
OWL) that are invariant across the logical computation, and whose lifecycle depends on 
entities that are not computed, because external to the computation world. For example, the 
notion of 30 ducks can be equally represented by the expressions:  
 

(S1)  ∃x. Duck(x) ∧ Numerosity(x,30) 
(S2)  ∃x. Duck(x) ∧ Numerosity(x, =(* 3 10)) 

 
because 30 is computationally equivalent to (*3 10), i.e. there is a procedure to derive 30 from 
(* 3 10), while duck is a symbol of a predicate that semantically extends on all the ducks 
assumed to be represented in the domain of the theory (and ducks cannot be computed21). 
This distinction is convenient to extend the domain of KR theories to entities that cannot be 
efficiently manipulated by inference engines (and unnecessarily so), e.g. classification 
algorithms.  
Ontologically, data types are regions: concrete data types can be used as values of e.g. metric 
relations of measurement, temporal and spatial location, etc., while abstract data types are 
used as names for logical entities (values of a name relation ranging on predicates, constants, 
etc.). 
On the other hand, when considered in a semiotical perspective, data types are information 
objects, the only ones that have a computational life (they are realized in machines), are about 
regions (concrete data types) or other entities (abstract data types). 
Data types are actually manipulated, exchanged, etc. No other entities are manipulated in 
electronic services. We can therefore exploit the IO pattern to create/reclassify metadata about 
‘content’, which enhance content manipulation technically, economically, legally, and from 
the usability viewpoint.  
 
In order to put metadata on content, we need to know what kind of entities those metadata are 
talking about. 
 
 

                                                             
21 In principle, ducks could be simulated, but this is another story. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 85 of 140 

6 Annex 

6.1 OWL-DL abstract syntax of DDPO (complete) 

The following is the complete DDPO code as included in the DOLCE-Lite-Plus library 
(version 3955) in the OWL abstract syntax form. The concrete syntax version has been 
validated for OWL-DL, and checked for consistency and classified with FaCT++ and 
RACER. 
 
OWL Species Validation Report 
 
Conclusion  
 
DL: YES 
 
Abstract Syntax Form 
 
Namespace(rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>) 
Namespace(xsd = <http://www.w3.org/2001/XMLSchema#>) 
Namespace(rdfs = <http://www.w3.org/2000/01/rdf-schema#>) 
Namespace(owl = <http://www.w3.org/2002/07/owl#>) 
Namespace(a = <http://www.loa-cnr.it/ontologies/CommonSenseMapping#>) 
Namespace(b = <http://www.loa-cnr.it/ontologies/TemporalRelations#>) 
Namespace(c = <http://www.loa-cnr.it/ontologies/DOLCE-Lite#>) 
Namespace(d = <http://www.loa-cnr.it/ontologies/DnS#>) 
Namespace(e = <http://www.loa-cnr.it/ontologies/Plans#>) 
Namespace(f = <http://www.loa-cnr.it/ontologies/InformationObjects#>) 
Namespace(g = <http://www.loa-cnr.it/ontologies/SemioticCommunicationTheory#>) 
Namespace(h = <http://www.loa-cnr.it/ontologies/ModalDescriptions#>) 
Namespace(i = <http://www.loa-cnr.it/ontologies/SocialUnits#>) 
Namespace(j = <http://www.loa-cnr.it/ontologies/Collections#>) 
Namespace(k = <http://www.loa-cnr.it/ontologies/Actions#>) 
Namespace(l = <http://www.loa-cnr.it/ontologies/Collectives#>) 
Namespace(m = <http://www.loa-cnr.it/ontologies/FunctionalParticipation#>) 
Namespace(n = <http://www.loa-cnr.it/ontologies/SpatialRelations#>) 
Namespace(o = <http://www.loa-cnr.it/ontologies/Systems#>) 
Namespace(p = <http://www.loa-cnr.it/ontologies/Causality#>) 
 
Ontology( <http://www.loa-cnr.it/ontologies/DOLCE-Lite> 
 
 Annotation(rdfs:label "DOLCE-Lite-Plus") 
 Annotation(owl:versionInfo "3.9.4.1”) 
 Annotation(rdfs:comment "The version 3.9 of DOLCE-Lite (updated to D18 of DOLCE-Full) with  some basic extensions, 
called DOLCE-Lite-Plus, or DLP.  The ontology graph in this version is the following:   
------Backbone: 
http://www.loa-cnr.it/ontologies/DOLCE-Lite# 
 http://www.loa-cnr.it/ontologies/TemporalRelations# 
 http://www.loa-cnr.it/ontologies/SpatialRelations# 
 http://www.loa-cnr.it/ontologies/DnS#  
------Basic extensions: 
  http://www.loa-cnr.it/ontologies/InformationObjects# 
  http://www.loa-cnr.it/ontologies/Actions# 
   http://www.loa-cnr.it/ontologies/SocialUnits# 
    http://www.loa-cnr.it/ontologies/Plans# 
     http://www.loa-cnr.it/ontologies/FunctionalParticipation# 
     http://www.loa-cnr.it/ontologies/Collections# 
      http://www.loa-cnr.it/ontologies/Collectives# 
       http://www.loa-cnr.it/ontologies/CommonSenseMapping# 
-----Experimental extensions: 
  http://www.loa-cnr.it/ontologies/Systems# 
  http://www.loa-cnr.it/ontologies/SemioticCommunicationTheory# 
  http://www.loa-cnr.it/ontologies/Causality# 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 86 of 140 

  http://www.loa-cnr.it/ontologies/ModalDescriptions# 
The backbone of the library is constituted by  
(1) DOLCE-Lite 
(2) two sets of temporal relations defined over perdurants which are adapted from Allen's temporal calculus,  and of spatial 
relations that simplify the expression of places and locations from particulars to regions  
(3) the DnS (Descriptions and Situations) ontology, which provides a vocabulary to talk of reified entities such as relations, 
roles, contexts,  situations, parameters, etc. Appropriate relations link DnS reifications to DOLCE-Lite non-reified entities.  
 
Based on that backbone, other wide-scoping ontologies are provided:  
(4) ontology of information objects, based on semiotics, which provides a vocabulary to talk of languages, expressions vs. 
meaning, logical vs. physical documents, reference, etc.  
(5) a still preliminary and rough vocabulary for actions, agents and social units (persons, organizations) 
(6) a well-developed ontology of plans and tasks, containing also a set of 
 Individual tasks that provide grounded primitives to specify process types             
(7) a preliminary ontology of functional participation relations, which provide a vocabulary for event-oriented relations 
encoded by linguistic verbs (in Western languages), like 'performs' or 'makes' 
(8) an ontology of collections and collectives 
(9) a set of common sense mappings, introduced to support a mapping to WordNet  (contained in another file). 
 
Besides these basic extensions, which are currently exploited in several application domains, and are actively under 
development, there are also some less developed ontologies, all bases on the backbone, but still at a preliminary and 
debatable stage. Some of them are included here as placeholders, and are used by some applications, but they are not yet 
stable.  
 
*******Scope of DOLCE-Lite-Plus*******   
The lite versions of DOLCE are simplified translations of DOLCE into various logical languages. They are maintained for 
several reasons: 
1. allowing the implementation of DOLCE-based ontologies in languages that are less expressive than FOL. In particular, 
DOLCE-Lite does not make use of S5 modalities and of some temporally-indexed relations. Modal operators are not heavily 
exploited in DOLCE, then the consequences are not very harmful for most uses.   Temporal indexing is partly supported by 
composing originally indexed relations with temporal location relations. Even this support is not provided for description 
logic versions of DOLCE-Lite like DAML+OIL, OWL-DL, etc.  
2. allowing a description-logic-like naming policy for DOLCE signature. In many cases, different names are adopted for 
relations that have the same name but different arities in the FOL version, or for relations that have polymorphic domains   
3. allowing extensions of DOLCE that do not have a detailed axiomatization yet, and modularizing them (placeholders)  
4. taking benefit of the services of certain implemented languages -specially the classification services provided by  
description logics- in order to support domain applications  The DLP ontology library is currently maintained in             two 
languages: a dialect of KIF3.0 (PL), and DAML+OIL. The first one contains a complete code for the library, including 
theWordNet alignment modules. The second one contains the library (according to available costructs of             
DAML+OIL) without the WordNet code, since it is very simple and takes much space.  DLP+KIF is currently used in some 
applications that need deep inferences, which can only be provided by expressive, logic-programming-enabled             
languages. DLP+DAML is currently used in Semantic Web applications, for example in the Core Ontology for Services 
(COS).  The extensions to DOLCE presented in the library are work in progress, and although some of them have been tested             
in realistic applications, they should be taken cautiously from the viewpoint of rigorous formal ontology.”) 
 
 ObjectProperty(<k:adopted-by> 
  inverseOf(k:adopts) 
  domain(c:description) 
  range(unionOf(<d:agentive-social-object> <k:cognitive-agentive-physical-object>))) 
 ObjectProperty(k:adopts 
  inverseOf(<k:adopted-by>) 
  domain(unionOf(<d:agentive-social-object> <k:cognitive-agentive-physical-object>)) 
  range(c:description)) 
 ObjectProperty(<k:co-participates-with> 
  inverseOf(<k:co-participates-with>) 
  domain(d:endurant) 
  range(d:endurant)) 
 ObjectProperty(<k:created-by> 
  inverseOf(k:creates) 
  domain(c:description) 
  range(unionOf(<d:agentive-social-object> <k:cognitive-agentive-physical-object>))) 
 ObjectProperty(k:creates 
  inverseOf(<k:created-by>) 
  domain(unionOf(<d:agentive-social-object> <k:cognitive-agentive-physical-object>)) 
  range(c:description)) 
 ObjectProperty(<k:empowered-for> 
  inverseOf(<k:empowered-to>) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 87 of 140 

  domain(c:task) 
  range(unionOf(<k:agent-driven-role> <i:agentive-figure>))) 
 ObjectProperty(<k:empowered-to> 
  inverseOf(<k:empowered-for>) 
  domain(unionOf(<k:agent-driven-role> <i:agentive-figure>)) 
  range(c:task)) 
 ObjectProperty(<k:exploited-by> 
  inverseOf(k:exploits) 
  domain(d:endurant) 
  range(c:method)) 
 ObjectProperty(k:exploits 
  inverseOf(<k:exploited-by>) 
  domain(c:method) 
  range(d:endurant)) 
 ObjectProperty(<k:has-method> 
  inverseOf(<k:method-of>) 
  domain(k:activity) 
  range(c:method)) 
 ObjectProperty(<k:made-by> 
  inverseOf(k:makes) 
  domain(d:endurant) 
  range(d:endurant)) 
 ObjectProperty(k:makes 
  inverseOf(<k:made-by>) 
  domain(d:endurant) 
  range(d:endurant)) 
 ObjectProperty(<k:method-of> 
  inverseOf(<k:has-method>) 
  domain(c:method) 
  range(k:activity)) 
 ObjectProperty(<k:obligation-for> 
  inverseOf(<k:obliged-to>) 
  domain(c:task) 
  range(unionOf(<k:agent-driven-role> <i:agentive-figure>))) 
 ObjectProperty(<k:obliged-to> 
  inverseOf(<k:obligation-for>) 
  domain(unionOf(<k:agent-driven-role> <i:agentive-figure>)) 
  range(c:task)) 
 ObjectProperty(k:postcondition 
  inverseOf(<k:postcondition-of>) 
  domain(c:description) 
  range(c:situation)) 
 ObjectProperty(<k:postcondition-of> 
  inverseOf(k:postcondition) 
  domain(c:situation) 
  range(c:description)) 
 ObjectProperty(k:precondition 
  inverseOf(<k:precondition-of>) 
  domain(c:description) 
  range(c:situation)) 
 ObjectProperty(<k:precondition-of> 
  inverseOf(k:precondition) 
  domain(c:situation) 
  range(c:description)) 
 ObjectProperty(<k:regulated-by> 
  inverseOf(k:regulates) 
  domain(c:situation) 
  range(c:regulation)) 
 ObjectProperty(k:regulates 
  inverseOf(<k:regulated-by>) 
  domain(c:regulation) 
  range(c:situation)) 
 ObjectProperty(<k:right-task-for> 
  inverseOf(<k:right-to>) 
  domain(c:task) 
  range(unionOf(<k:agent-driven-role> <i:agentive-figure>))) 
 ObjectProperty(<k:right-to> 
  inverseOf(<k:right-task-for>) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 88 of 140 

  domain(unionOf(<k:agent-driven-role> <i:agentive-figure>)) 
  range(c:task)) 
 ObjectProperty(<k:used-by> 
  inverseOf(k:uses) 
  domain(d:endurant) 
  range(d:endurant)) 
 ObjectProperty(k:uses 
  inverseOf(<k:used-by>) 
  domain(d:endurant) 
  range(d:endurant)) 
 ObjectProperty(<p:causally-follows> 
  inverseOf(<p:causally-precedes>) 
  domain(d:perdurant) 
  range(d:perdurant)) 
 ObjectProperty(<p:causally-precedes> 
  inverseOf(<p:causally-follows>) 
  domain(d:perdurant) 
  range(d:perdurant)) 
 ObjectProperty(<j:characterized-by> 
  inverseOf(j:characterizes) 
  domain(j:collection) 
  range(c:role)) 
 ObjectProperty(j:characterizes 
  inverseOf(<j:characterized-by>) 
  domain(c:role) 
  range(j:collection)) 
 ObjectProperty(<j:covered-by> 
  inverseOf(j:covers) 
  domain(j:collection) 
  range(c:role)) 
 ObjectProperty(j:covers 
  inverseOf(<j:covered-by>) 
  domain(c:role) 
  range(j:collection)) 
 ObjectProperty(<j:extensionally-equivalent> 
  inverseOf(<j:extensionally-equivalent>) 
  domain(j:collection) 
  range(j:collection)) 
 ObjectProperty(j:member 
  inverseOf(<j:member-of>) 
  domain(j:collection) 
  range(d:endurant)) 
 ObjectProperty(<j:member-of> 
  inverseOf(j:member) 
  domain(d:endurant) 
  range(j:collection)) 
 ObjectProperty(<j:unified-by> 
  inverseOf(j:unifies) 
  domain(j:collection) 
  range(c:description)) 
 ObjectProperty(j:unifies 
  inverseOf(<j:unified-by>) 
  domain(c:description) 
  range(j:collection)) 
 ObjectProperty(a:duration 
  inverseOf(<a:duration-of>) 
  domain(d:perdurant) 
  range(<d:time-interval>)) 
 ObjectProperty(<a:duration-of> 
  inverseOf(a:duration) 
  domain(<d:time-interval>) 
  range(d:perdurant)) 
 ObjectProperty(<a:geographic-part> 
  inverseOf(<a:geographic-part-of>) 
  domain(<a:political-geographic-object>) 
  range(<a:political-geographic-object>)) 
 ObjectProperty(<a:geographic-part-of> 
  inverseOf(<a:geographic-part>) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 89 of 140 

  domain(<a:political-geographic-object>) 
  range(<a:political-geographic-object>)) 
 ObjectProperty(<a:happens-at> 
  inverseOf(<a:time-of-happening-of>) 
  domain(d:perdurant) 
  range(<d:time-interval>)) 
 ObjectProperty(<a:time-of-happening-of> 
  inverseOf(<a:happens-at>) 
  domain(<d:time-interval>) 
  range(d:perdurant)) 
 ObjectProperty(a:unit 
  inverseOf(<a:unit-of>) 
  domain(d:region) 
  range(<d:measurement-unit>)) 
 ObjectProperty(<a:unit-of> 
  inverseOf(a:unit) 
  domain(<d:measurement-unit>) 
  range(d:region)) 
 ObjectProperty(<d:abstract-location> 
  inverseOf(<d:abstract-location-of>) 
  domain(<d:non-physical-endurant>) 
  range(<d:abstract-region>)) 
 ObjectProperty(<d:abstract-location-of> 
  inverseOf(<d:abstract-location>) 
  domain(<d:abstract-region>) 
  range(<d:non-physical-endurant>)) 
 ObjectProperty(<d:atomic-part> 
  inverseOf(<d:atomic-part-of>) 
  domain(d:particular) 
  range(d:atom)) 
 ObjectProperty(<d:atomic-part-of> 
  inverseOf(<d:atomic-part>) 
  domain(d:atom) 
  range(d:particular)) 
 ObjectProperty(d:boundary 
  inverseOf(<d:boundary-of>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:boundary-of> 
  inverseOf(d:boundary) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:constant-participant> 
  inverseOf(<d:constant-participant-in>) 
  domain(d:perdurant) 
  range(d:endurant)) 
 ObjectProperty(<d:constant-participant-in> 
  inverseOf(<d:constant-participant>) 
  domain(d:endurant) 
  range(d:perdurant)) 
 ObjectProperty(<d:direct-predecessor> 
  inverseOf(<d:direct-successor>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:direct-successor> 
  inverseOf(<d:direct-predecessor>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:exact-location> 
  inverseOf(<d:exact-location-of>) 
  domain(d:particular) 
  range(d:region)) 
 ObjectProperty(<d:exact-location-of> 
  inverseOf(<d:exact-location>) 
  domain(d:region) 
  range(d:particular)) 
 ObjectProperty(<d:generic-constituent> 
  inverseOf(<d:generic-constituent-of>) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 90 of 140 

  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:generic-constituent-of> 
  inverseOf(<d:generic-constituent>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:generic-dependent> 
  inverseOf(<d:generically-dependent-on>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:generic-location> 
  inverseOf(<d:generic-location-of>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:generic-location-of> 
  inverseOf(<d:generic-location>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:generically-dependent-on> 
  inverseOf(<d:generic-dependent>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:has-quale> 
  inverseOf(<d:quale-of>) 
  domain(d:quality) 
  range(d:quale)) 
 ObjectProperty(<d:has-quality> 
  inverseOf(<d:inherent-in>) 
  domain(d:particular) 
  range(d:quality)) 
 ObjectProperty(<d:has-t-quality> 
  inverseOf(<d:t-inherent-in>) 
  domain(d:particular) 
  range(d:quality)) 
 ObjectProperty(d:host 
  inverseOf(<d:host-of>) 
  domain(d:feature) 
  range(<d:physical-endurant>)) 
 ObjectProperty(<d:host-of> 
  inverseOf(d:host) 
  domain(<d:physical-endurant>) 
  range(d:feature)) 
 ObjectProperty(<d:identity-c> Transitive 
  inverseOf(<d:identity-c>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:identity-n> Transitive 
  inverseOf(<d:identity-n>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:immediate-relation> 
  inverseOf(<d:immediate-relation-i>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:immediate-relation-i> 
  inverseOf(<d:immediate-relation>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:inherent-in> 
  inverseOf(<d:has-quality>) 
  domain(d:quality) 
  range(d:particular)) 
 ObjectProperty(<d:intensionally-referenced-by> 
  inverseOf(<d:intensionally-references>) 
  domain(d:particular) 
  range(<d:non-physical-object>)) 
 ObjectProperty(<d:intensionally-references> 
  inverseOf(<d:intensionally-referenced-by>) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 91 of 140 

  domain(<d:non-physical-object>) 
  range(d:particular)) 
 ObjectProperty(d:life Functional 
  inverseOf(<d:life-of>) 
  domain(d:endurant) 
  range(d:perdurant)) 
 ObjectProperty(<d:life-of> Functional 
  inverseOf(d:life) 
  domain(d:perdurant) 
  range(d:endurant)) 
 ObjectProperty(<d:mediated-relation> 
  inverseOf(<d:mediated-relation-i>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:mediated-relation-i> 
  inverseOf(<d:mediated-relation>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:mereologically-coincides> 
  inverseOf(<d:mereologically-coincides>) 
  domain(d:endurant) 
  range(d:endurant)) 
 ObjectProperty(d:overlaps 
  inverseOf(d:overlaps) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(d:part 
  inverseOf(<d:part-of>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:part-of> 
  inverseOf(d:part) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(d:participant 
  inverseOf(<d:participant-in>) 
  domain(d:perdurant) 
  range(d:endurant)) 
 ObjectProperty(<d:participant-in> 
  inverseOf(d:participant) 
  domain(d:endurant) 
  range(d:perdurant)) 
 ObjectProperty(<d:partly-compresent> 
  inverseOf(<d:partly-compresent>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:physical-location> 
  inverseOf(<d:physical-location-of>) 
  domain(<d:physical-endurant>) 
  range(<d:physical-region>)) 
 ObjectProperty(<d:physical-location-of> 
  inverseOf(<d:physical-location>) 
  domain(<d:physical-region>) 
  range(<d:physical-endurant>)) 
 ObjectProperty(d:predecessor 
  inverseOf(d:successor) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:proper-part> 
  inverseOf(<d:proper-part-of>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:proper-part-of> 
  inverseOf(<d:proper-part>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:q-location> 
  inverseOf(<d:q-location-of>) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 92 of 140 

  domain(d:quality) 
  range(d:region)) 
 ObjectProperty(<d:q-location-of> 
  inverseOf(<d:q-location>) 
  domain(d:region) 
  range(d:quality)) 
 ObjectProperty(<d:q-present-at> 
  inverseOf(<d:time-of-q-presence-of>) 
  domain(<d:physical-quality>) 
  range(<d:time-interval>)) 
 ObjectProperty(<d:quale-of> 
  inverseOf(<d:has-quale>) 
  domain(d:quale) 
  range(d:quality)) 
 ObjectProperty(<d:r-location> 
  inverseOf(<d:r-location-of>) 
  domain(d:region) 
  range(d:region)) 
 ObjectProperty(<d:r-location-of> 
  inverseOf(<d:r-location>) 
  domain(d:region) 
  range(d:region)) 
 ObjectProperty(<d:sibling-part> 
  inverseOf(<d:sibling-part>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:spatio-temporal-presence-of> 
  inverseOf(<d:spatio-temporally-present-at>) 
  domain(<d:spatio-temporal-region>) 
  range(d:particular)) 
 ObjectProperty(<d:spatio-temporally-present-at> 
  inverseOf(<d:spatio-temporal-presence-of>) 
  domain(d:particular) 
  range(<d:spatio-temporal-region>)) 
 ObjectProperty(<d:specific-constant-constituent> 
  inverseOf(<d:specific-constant-constituent-of>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:specific-constant-constituent-of> 
  inverseOf(<d:specific-constant-constituent>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:specific-constant-dependent> 
  inverseOf(<d:specifically-constantly-dependent-on>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:specifically-constantly-dependent-on> 
  inverseOf(<d:specific-constant-dependent>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:strong-connection> 
  inverseOf(<d:strong-connection>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(d:successor 
  inverseOf(d:predecessor) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<d:t-inherent-in> 
  inverseOf(<d:has-t-quality>) 
  domain(d:quality) 
  range(d:particular)) 
 ObjectProperty(<d:temporary-atomic-part> 
  inverseOf(<d:temporary-atomic-part-of>) 
  domain(d:endurant) 
  range(d:endurant)) 
 ObjectProperty(<d:temporary-atomic-part-of> 
  inverseOf(<d:temporary-atomic-part>) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 93 of 140 

  domain(d:endurant) 
  range(d:endurant)) 
 ObjectProperty(<d:temporary-part> 
  inverseOf(<d:temporary-part-of>) 
  domain(d:endurant) 
  range(d:endurant)) 
 ObjectProperty(<d:temporary-part-of> 
  inverseOf(<d:temporary-part>) 
  domain(d:endurant) 
  range(d:endurant)) 
 ObjectProperty(<d:temporary-participant> 
  inverseOf(<d:temporary-participant-in>) 
  domain(d:perdurant) 
  range(d:endurant)) 
 ObjectProperty(<d:temporary-participant-in> 
  inverseOf(<d:temporary-participant>) 
  domain(d:endurant) 
  range(d:perdurant)) 
 ObjectProperty(<d:temporary-proper-part> 
  inverseOf(<d:temporary-proper-part-of>) 
  domain(d:endurant) 
  range(d:endurant)) 
 ObjectProperty(<d:temporary-proper-part-of> 
  inverseOf(<d:temporary-proper-part>) 
  domain(d:endurant) 
  range(d:endurant)) 
 ObjectProperty(<d:time-of-q-presence-of> 
  inverseOf(<d:q-present-at>) 
  domain(<d:time-interval>) 
  range(<d:physical-quality>)) 
 ObjectProperty(<d:total-constant-participant> 
  inverseOf(<d:total-constant-participant-in>) 
  domain(d:perdurant) 
  range(d:endurant)) 
 ObjectProperty(<d:total-constant-participant-in> 
  inverseOf(<d:total-constant-participant>) 
  domain(d:endurant) 
  range(d:perdurant)) 
 ObjectProperty(<d:total-temporary-participant> 
  inverseOf(<d:total-temporary-participant-in>) 
  domain(d:perdurant) 
  range(d:endurant)) 
 ObjectProperty(<d:total-temporary-participant-in> 
  inverseOf(<d:total-temporary-participant>) 
  domain(d:endurant) 
  range(d:perdurant)) 
 ObjectProperty(<d:weak-connection> 
  inverseOf(<d:weak-connection>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(c:about 
  inverseOf(<c:aboutness-of>) 
  domain(<c:information-object>) 
  range(d:particular)) 
 ObjectProperty(<c:aboutness-of> 
  inverseOf(c:about) 
  domain(d:particular) 
  range(<c:information-object>)) 
 ObjectProperty(<c:acted-by> 
  inverseOf(<c:acts-for>) 
  domain(c:figure) 
  range(unionOf(<d:agentive-social-object> <d:agentive-physical-object>))) 
 ObjectProperty(<c:acts-for> 
  inverseOf(<c:acted-by>) 
  domain(unionOf(<d:agentive-social-object> <d:agentive-physical-object>)) 
  range(c:figure)) 
 ObjectProperty(c:admits 
  inverseOf(<c:admitted-by>) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 94 of 140 

  domain(c:description) 
  range(d:region)) 
 ObjectProperty(<c:admitted-by> 
  inverseOf(c:admits) 
  domain(d:region) 
  range(c:description)) 
 ObjectProperty(<c:attitude-target-of> 
  inverseOf(<c:attitude-towards>) 
  domain(c:course) 
  range(unionOf(<k:agent-driven-role> <i:agentive-figure>))) 
 ObjectProperty(<c:attitude-towards> 
  inverseOf(<c:attitude-target-of>) 
  domain(unionOf(<k:agent-driven-role> <i:agentive-figure>)) 
  range(c:course)) 
 ObjectProperty(<c:c-sat> 
  inverseOf(<c:c-sat-by>) 
  domain(c:situation) 
  range(c:description)) 
 ObjectProperty(<c:c-sat-by> 
  inverseOf(<c:c-sat>) 
  domain(c:description) 
  range(c:situation)) 
 ObjectProperty(<c:classified-by> 
  inverseOf(c:classifies) 
  domain(d:particular) 
  range(c:concept)) 
 ObjectProperty(c:classifies 
  inverseOf(<c:classified-by>) 
  domain(c:concept) 
  range(d:particular)) 
 ObjectProperty(c:component 
  inverseOf(<c:component-of>) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<c:component-of> 
  inverseOf(c:component) 
  domain(d:particular) 
  range(d:particular)) 
 ObjectProperty(<c:conceived-by> 
  inverseOf(c:conceives) 
  domain(c:description) 
  range(unionOf(<d:agentive-social-object> <d:agentive-physical-object>))) 
 ObjectProperty(c:conceives 
  inverseOf(<c:conceived-by>) 
  domain(unionOf(<d:agentive-social-object> <d:agentive-physical-object>)) 
  range(c:description)) 
 ObjectProperty(<c:d-used-by> 
  inverseOf(<c:d-uses>) 
  domain(unionOf(c:figure c:concept)) 
  range(c:description)) 
 ObjectProperty(<c:d-uses> 
  inverseOf(<c:d-used-by>) 
  domain(c:description) 
  range(unionOf(c:figure c:concept))) 
 ObjectProperty(<c:defined-by> 
  inverseOf(c:defines) 
  domain(unionOf(c:figure c:concept)) 
  range(c:description)) 
 ObjectProperty(c:defines 
  inverseOf(<c:defined-by>) 
  domain(c:description) 
  range(unionOf(c:figure c:concept))) 
 ObjectProperty(<c:deputed-by> 
  inverseOf(c:deputes) 
  domain(c:role) 
  range(c:figure)) 
 ObjectProperty(c:deputes 
  inverseOf(<c:deputed-by>) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 95 of 140 

  domain(c:figure) 
  range(c:role)) 
 ObjectProperty(<c:expanded-by> 
  inverseOf(c:expands) 
  domain(c:description) 
  range(c:description)) 
 ObjectProperty(c:expands 
  inverseOf(<c:expanded-by>) 
  domain(c:description) 
  range(c:description)) 
 ObjectProperty(<c:expected-by> 
  inverseOf(c:expects) 
  domain(d:perdurant) 
  range(c:description)) 
 ObjectProperty(<c:expected-setting> 
  inverseOf(<c:expected-setting-for>) 
  domain(unionOf(c:role c:course c:parameter)) 
  range(c:situation)) 
 ObjectProperty(<c:expected-setting-for> 
  inverseOf(<c:expected-setting>) 
  domain(c:situation) 
  range(unionOf(c:role c:course c:parameter))) 
 ObjectProperty(c:expects 
  inverseOf(<c:expected-by>) 
  domain(c:description) 
  range(d:perdurant)) 
 ObjectProperty(<c:expressed-by> 
  inverseOf(c:expresses) 
  domain(<d:non-physical-object>) 
  range(<c:information-object>)) 
 ObjectProperty(c:expresses 
  inverseOf(<c:expressed-by>) 
  domain(<c:information-object>) 
  range(<d:non-physical-object>)) 
 ObjectProperty(<c:has-in-scope> 
  inverseOf(<c:in-scope-of>) 
  domain(c:description) 
  range(c:situation)) 
 ObjectProperty(<c:in-scope-of> 
  inverseOf(<c:has-in-scope>) 
  domain(c:situation) 
  range(c:description)) 
 ObjectProperty(<c:interpreted-by> 
  inverseOf(c:interprets) 
  domain(<c:information-object>) 
  range(unionOf(<d:agentive-social-object> <d:agentive-physical-object>))) 
 ObjectProperty(c:interprets 
  inverseOf(<c:interpreted-by>) 
  domain(unionOf(<d:agentive-social-object> <d:agentive-physical-object>)) 
  range(<c:information-object>)) 
 ObjectProperty(<c:involved-in> 
  inverseOf(c:involves) 
  domain(d:endurant) 
  range(c:description)) 
 ObjectProperty(c:involves 
  inverseOf(<c:involved-in>) 
  domain(c:description) 
  range(d:endurant)) 
 ObjectProperty(<c:metaphorically-played-by> 
  inverseOf(<c:metaphorically-plays>) 
  domain(c:role) 
  range(d:endurant)) 
 ObjectProperty(<c:metaphorically-plays> 
  inverseOf(<c:metaphorically-played-by>) 
  domain(d:endurant) 
  range(c:role)) 
 ObjectProperty(<c:modal-target> 
  inverseOf(<c:modal-target-of>) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 96 of 140 

  domain(unionOf(c:role c:figure)) 
  range(c:course)) 
 ObjectProperty(<c:modal-target-of> 
  inverseOf(<c:modal-target>) 
  domain(c:course) 
  range(unionOf(c:role c:figure))) 
 ObjectProperty(<c:optionally-used-by> 
  inverseOf(<c:optionally-uses>) 
  domain(c:concept) 
  range(c:description)) 
 ObjectProperty(<c:optionally-uses> 
  inverseOf(<c:optionally-used-by>) 
  domain(c:description) 
  range(c:concept)) 
 ObjectProperty(<c:p-sat> 
  inverseOf(<c:p-sat-by>) 
  domain(c:situation) 
  range(c:description)) 
 ObjectProperty(<c:p-sat-by> 
  inverseOf(<c:p-sat>) 
  domain(c:description) 
  range(c:situation)) 
 ObjectProperty(<c:parametrized-by> 
  inverseOf(c:parametrizes) 
  domain(d:particular) 
  domain(complementOf(c:situation)) 
  range(c:parameter)) 
 ObjectProperty(c:parametrizes 
  inverseOf(<c:parametrized-by>) 
  domain(c:parameter) 
  range(complementOf(c:situation)) 
  range(d:particular)) 
 ObjectProperty(<c:played-by> 
  inverseOf(c:plays) 
  domain(c:role) 
  range(d:endurant)) 
 ObjectProperty(c:plays 
  inverseOf(<c:played-by>) 
  domain(d:endurant) 
  range(c:role)) 
 ObjectProperty(<c:r-sat> 
  inverseOf(<c:r-sat-by>) 
  domain(c:situation) 
  range(c:description)) 
 ObjectProperty(<c:r-sat-by> 
  inverseOf(<c:r-sat>) 
  domain(c:description) 
  range(c:situation)) 
 ObjectProperty(<c:realized-by> 
  inverseOf(c:realizes) 
  domain(<d:non-physical-object>) 
  range(unionOf(<d:physical-region> <d:physical-endurant> <d:physical-quality> intersectionOf(c:situation 
restriction(<c:setting-for> someValuesFrom(unionOf(<d:physical-region> restriction(d:participant 
someValuesFrom(<d:physical-endurant>)) <d:physical-endurant> <d:physical-quality>)))) 
intersectionOf(restriction(d:participant someValuesFrom(<d:physical-endurant>)) d:perdurant)))) 
 ObjectProperty(c:realizes 
  inverseOf(<c:realized-by>) 
  domain(unionOf(<d:physical-region> <d:physical-endurant> <d:physical-quality> intersectionOf(restriction(d:participant 
someValuesFrom(<d:physical-endurant>)) d:perdurant) intersectionOf(c:situation restriction(<c:setting-for> 
someValuesFrom(unionOf(<d:physical-region> <d:physical-endurant> <d:physical-quality> restriction(d:participant 
someValuesFrom(<d:physical-endurant>)))))))) 
  range(<d:non-physical-object>)) 
 ObjectProperty(<c:referenced-by> 
  inverseOf(c:references) 
  domain(d:particular) 
  range(<d:non-physical-object>)) 
 ObjectProperty(c:references 
  inverseOf(<c:referenced-by>) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 97 of 140 

  domain(<d:non-physical-object>) 
  range(d:particular)) 
 ObjectProperty(<c:refined-by> 
  inverseOf(c:refines) 
  domain(unionOf(c:figure c:concept)) 
  range(unionOf(c:figure c:concept))) 
 ObjectProperty(c:refines 
  inverseOf(<c:refined-by>) 
  domain(unionOf(c:figure c:concept)) 
  range(unionOf(c:figure c:concept))) 
 ObjectProperty(<c:required-by> 
  inverseOf(c:requires) 
  domain(<d:social-object>) 
  range(<d:social-object>)) 
 ObjectProperty(c:requires 
  inverseOf(<c:required-by>) 
  domain(<d:social-object>) 
  range(<d:social-object>)) 
 ObjectProperty(c:requisite 
  inverseOf(<c:requisite-for>) 
  domain(unionOf(c:role c:course <c:information-object> c:figure)) 
  range(c:parameter)) 
 ObjectProperty(<c:requisite-for> 
  inverseOf(c:requisite) 
  domain(c:parameter) 
  range(unionOf(c:role c:course <c:information-object> c:figure))) 
 ObjectProperty(<c:satisfied-by> 
  inverseOf(c:satisfies) 
  domain(c:description) 
  range(c:situation)) 
 ObjectProperty(c:satisfies 
  inverseOf(<c:satisfied-by>) 
  domain(c:situation) 
  range(c:description)) 
 ObjectProperty(<c:sequenced-by> 
  inverseOf(c:sequences) 
  domain(d:perdurant) 
  range(c:course)) 
 ObjectProperty(c:sequences 
  inverseOf(<c:sequenced-by>) 
  domain(c:course) 
  range(d:perdurant)) 
 ObjectProperty(c:setting 
  inverseOf(<c:setting-for>) 
  domain(complementOf(c:situation)) 
  domain(d:particular) 
  range(c:situation)) 
 ObjectProperty(<c:setting-for> 
  inverseOf(c:setting) 
  domain(c:situation) 
  range(complementOf(c:situation)) 
  range(d:particular)) 
 ObjectProperty(<c:specialized-by> 
  inverseOf(c:specializes) 
  domain(<d:social-object>) 
  range(<d:social-object>)) 
 ObjectProperty(c:specializes 
  inverseOf(<c:specialized-by>) 
  domain(<d:social-object>) 
  range(<d:social-object>)) 
 ObjectProperty(<c:temporary-component> 
  inverseOf(<c:temporary-component-of>) 
  domain(d:endurant) 
  range(d:endurant)) 
 ObjectProperty(<c:temporary-component-of> 
  inverseOf(<c:temporary-component>) 
  domain(d:endurant) 
  range(d:endurant)) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 98 of 140 

 ObjectProperty(<c:value-for> 
  inverseOf(<c:valued-by>) 
  domain(d:region) 
  range(c:parameter)) 
 ObjectProperty(<c:valued-by> 
  inverseOf(<c:value-for>) 
  domain(c:parameter) 
  range(d:region)) 
 ObjectProperty(<m:functional-participant> 
  inverseOf(<m:functional-participant-in>) 
  domain(d:perdurant) 
  range(d:endurant)) 
 ObjectProperty(<m:functional-participant-in> 
  inverseOf(<m:functional-participant>) 
  domain(d:endurant) 
  range(d:perdurant)) 
 ObjectProperty(<m:generic-target> 
  inverseOf(<m:generic-target-of>) 
  domain(k:activity) 
  range(d:endurant)) 
 ObjectProperty(<m:generic-target-of> 
  inverseOf(<m:generic-target>) 
  domain(d:endurant) 
  range(k:activity)) 
 ObjectProperty(<m:has-state> 
  inverseOf(<m:state-of>) 
  domain(d:endurant) 
  range(d:state)) 
 ObjectProperty(m:instrument 
  inverseOf(<m:instrument-of>) 
  domain(k:activity) 
  range(<d:physical-object>)) 
 ObjectProperty(<m:instrument-of> 
  inverseOf(m:instrument) 
  domain(<d:physical-object>) 
  range(k:activity)) 
 ObjectProperty(m:patient 
  inverseOf(<m:patient-of>) 
  domain(d:perdurant) 
  range(d:endurant)) 
 ObjectProperty(<m:patient-of> 
  inverseOf(m:patient) 
  domain(d:endurant) 
  range(d:perdurant)) 
 ObjectProperty(<m:performed-by> 
  inverseOf(m:performs) 
  domain(k:action) 
  range(unionOf(<d:agentive-social-object> <d:agentive-physical-object>))) 
 ObjectProperty(m:performs 
  inverseOf(<m:performed-by>) 
  domain(unionOf(<d:agentive-social-object> <d:agentive-physical-object>)) 
  range(k:action)) 
 ObjectProperty(<m:prescribed-by> 
  inverseOf(m:prescribes) 
  domain(k:action) 
  range(unionOf(<d:agentive-social-object> <d:agentive-physical-object>))) 
 ObjectProperty(m:prescribes 
  inverseOf(<m:prescribed-by>) 
  domain(unionOf(<d:agentive-social-object> <d:agentive-physical-object>)) 
  range(k:action)) 
 ObjectProperty(m:product 
  inverseOf(<m:product-of>) 
  domain(k:activity) 
  range(d:endurant)) 
 ObjectProperty(<m:product-of> 
  inverseOf(m:product) 
  domain(d:endurant) 
  range(k:activity)) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 99 of 140 

 ObjectProperty(m:resource 
  inverseOf(<m:resource-for>) 
  domain(k:activity) 
  range(<d:amount-of-matter>)) 
 ObjectProperty(<m:resource-for> 
  inverseOf(m:resource) 
  domain(<d:amount-of-matter>) 
  range(k:activity)) 
 ObjectProperty(m:result 
  inverseOf(<m:result-of>) 
  domain(k:activity) 
  range(d:perdurant)) 
 ObjectProperty(<m:result-of> 
  inverseOf(m:result) 
  domain(d:perdurant) 
  range(k:activity)) 
 ObjectProperty(<m:state-of> 
  inverseOf(<m:has-state>) 
  domain(d:state) 
  range(d:endurant)) 
 ObjectProperty(m:substrate 
  inverseOf(<m:substrate-of>) 
  domain(d:perdurant) 
  range(d:endurant)) 
 ObjectProperty(<m:substrate-of> 
  inverseOf(m:substrate) 
  domain(d:endurant) 
  range(d:perdurant)) 
 ObjectProperty(m:target 
  inverseOf(<m:target-of>) 
  domain(d:perdurant) 
  range(d:endurant)) 
 ObjectProperty(<m:target-of> 
  inverseOf(m:target) 
  domain(d:endurant) 
  range(d:perdurant)) 
 ObjectProperty(m:theme 
  inverseOf(<m:theme-of>) 
  domain(d:perdurant) 
  range(<c:information-object>)) 
 ObjectProperty(<m:theme-of> 
  inverseOf(m:theme) 
  domain(<c:information-object>) 
  range(d:perdurant)) 
 ObjectProperty(<m:use-of> 
  inverseOf(<m:used-in>) 
  domain(k:action) 
  range(d:endurant)) 
 ObjectProperty(<m:used-in> 
  inverseOf(<m:use-of>) 
  domain(d:endurant) 
  range(k:action)) 
 ObjectProperty(<f:ordered-by> 
  inverseOf(f:orders) 
  domain(<c:information-object>) 
  range(<f:information-encoding-system>)) 
 ObjectProperty(f:orders 
  inverseOf(<f:ordered-by>) 
  domain(<f:information-encoding-system>) 
  range(<c:information-object>)) 
 ObjectProperty(<f:q-represented-by> 
  inverseOf(<f:q-represents>) 
  domain(d:region) 
  range(<c:information-object>)) 
 ObjectProperty(<f:q-represents> 
  inverseOf(<f:q-represented-by>) 
  domain(<c:information-object>) 
  range(d:region)) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 100 of 140 

 ObjectProperty(<f:referred-by> 
  inverseOf(<f:refers-to>) 
  domain(d:particular) 
  range(unionOf(<d:agentive-social-object> <d:agentive-physical-object>))) 
 ObjectProperty(<f:refers-to> 
  inverseOf(<f:referred-by>) 
  domain(unionOf(<d:agentive-social-object> <d:agentive-physical-object>)) 
  range(d:particular)) 
 ObjectProperty(h:bdi 
  inverseOf(<h:bdi-target-of>) 
  domain(unionOf(<k:agent-driven-role> <i:agentive-figure>)) 
  range(c:task)) 
 ObjectProperty(<h:bdi-target-of> 
  inverseOf(h:bdi) 
  domain(c:task) 
  range(unionOf(<k:agent-driven-role> <i:agentive-figure>))) 
 ObjectProperty(<h:desire-target-of> 
  inverseOf(<h:desire-towards>) 
  domain(c:course) 
  range(unionOf(<k:agent-driven-role> <i:agentive-figure>))) 
 ObjectProperty(<h:desire-towards> 
  inverseOf(<h:desire-target-of>) 
  domain(unionOf(<k:agent-driven-role> <i:agentive-figure>)) 
  range(c:course)) 
 ObjectProperty(<h:subject-target-of> 
  inverseOf(<h:subjected-to>) 
  domain(c:task) 
  range(unionOf(<k:agent-driven-role> <i:agentive-figure>))) 
 ObjectProperty(<h:subjected-to> 
  inverseOf(<h:subject-target-of>) 
  domain(unionOf(<k:agent-driven-role> <i:agentive-figure>)) 
  range(c:task)) 
 ObjectProperty(<e:achievable-through> 
  domain(e:goal) 
  range(c:task)) 
 ObjectProperty(<e:adopts-goal> 
  domain(unionOf(<d:agentive-social-object> <k:cognitive-agentive-physical-object>)) 
  range(e:goal)) 
 ObjectProperty(<e:adopts-plan> 
  domain(unionOf(<d:agentive-social-object> <k:cognitive-agentive-physical-object>)) 
  range(c:plan)) 
 ObjectProperty(<e:discarded-within> 
  inverseOf(e:discards) 
  domain(c:task) 
  range(c:plan)) 
 ObjectProperty(e:discards 
  inverseOf(<e:discarded-within>) 
  domain(c:plan) 
  range(c:task)) 
 ObjectProperty(<e:disposition-to> 
  domain(c:role) 
  range(e:goal)) 
 ObjectProperty(<e:exit-condition> 
  inverseOf(<e:exit-condition-of>) 
  domain(<e:control-task>) 
  range(<e:control-task>)) 
 ObjectProperty(<e:exit-condition-of> 
  inverseOf(<e:exit-condition>) 
  domain(<e:control-task>) 
  range(<e:control-task>)) 
 ObjectProperty(<e:influenced-by> 
  inverseOf(e:influences) 
  domain(e:goal) 
  range(e:goal)) 
 ObjectProperty(e:influences 
  inverseOf(<e:influenced-by>) 
  domain(e:goal) 
  range(e:goal)) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 101 of 140 

 ObjectProperty(<e:iteration-interval> 
  inverseOf(<e:iteration-interval-of>) 
  domain(c:task) 
  range(<d:time-interval>)) 
 ObjectProperty(<e:iteration-interval-of> 
  inverseOf(<e:iteration-interval>) 
  domain(<d:time-interval>) 
  range(c:task)) 
 ObjectProperty(<e:main-goal> 
  inverseOf(<e:main-goal-of>) 
  domain(c:plan) 
  range(e:goal)) 
 ObjectProperty(<e:main-goal-of> 
  inverseOf(<e:main-goal>) 
  domain(e:goal) 
  range(c:plan)) 
 ObjectProperty(<e:sibling-task> 
  inverseOf(<e:sibling-task>) 
  domain(c:task) 
  range(c:task)) 
 ObjectProperty(e:subgoal 
  inverseOf(<e:subgoal-of>) 
  domain(c:plan) 
  range(e:goal)) 
 ObjectProperty(<e:subgoal-of> 
  inverseOf(e:subgoal) 
  domain(e:goal) 
  range(c:plan)) 
 ObjectProperty(<e:task-postcondition> 
  inverseOf(<e:task-postcondition-of>) 
  domain(c:task) 
  range(c:situation)) 
 ObjectProperty(<e:task-postcondition-of> 
  inverseOf(<e:task-postcondition>) 
  domain(c:situation) 
  range(c:task)) 
 ObjectProperty(<e:task-precondition> 
  inverseOf(<e:task-precondition-of>) 
  domain(c:task) 
  range(c:situation)) 
 ObjectProperty(<e:task-precondition-of> 
  inverseOf(<e:task-precondition>) 
  domain(c:situation) 
  range(c:task)) 
 ObjectProperty(<i:enforced-by> 
  inverseOf(i:enforces) 
  domain(c:regulation) 
  range(i:institution)) 
 ObjectProperty(i:enforces 
  inverseOf(<i:enforced-by>) 
  domain(i:institution) 
  range(c:regulation)) 
 ObjectProperty(<i:ruled-by> 
  inverseOf(i:rules) 
  domain(unionOf(c:role c:figure)) 
  range(<i:socially-constructed-person>)) 
 ObjectProperty(i:rules 
  inverseOf(<i:ruled-by>) 
  domain(<i:socially-constructed-person>) 
  range(unionOf(c:role c:figure))) 
 ObjectProperty(<n:approximate-location> 
  inverseOf(<n:approximate-location-of>) 
  domain(intersectionOf(complementOf(d:region) d:particular)) 
  range(intersectionOf(d:particular complementOf(d:region)))) 
 ObjectProperty(<n:approximate-location-of> 
  inverseOf(<n:approximate-location>) 
  domain(intersectionOf(d:particular complementOf(d:region))) 
  range(intersectionOf(complementOf(d:region) d:particular))) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 102 of 140 

 ObjectProperty(<n:d-spatial-location> 
  inverseOf(<n:d-spatial-location-of>) 
  domain(<d:non-physical-endurant>) 
  range(<d:space-region>)) 
 ObjectProperty(<n:d-spatial-location-of> 
  inverseOf(<n:d-spatial-location>) 
  domain(<d:space-region>) 
  range(<d:non-physical-endurant>)) 
 ObjectProperty(<n:descriptive-origin> 
  inverseOf(<n:descriptive-origin-of>) 
  domain(d:endurant) 
  range(<d:non-physical-endurant>)) 
 ObjectProperty(<n:descriptive-origin-of> 
  inverseOf(<n:descriptive-origin>) 
  domain(<d:non-physical-endurant>) 
  range(d:endurant)) 
 ObjectProperty(<n:descriptive-place> 
  inverseOf(<n:descriptive-place-of>) 
  domain(d:endurant) 
  range(<d:non-physical-endurant>)) 
 ObjectProperty(<n:descriptive-place-of> 
  inverseOf(<n:descriptive-place>) 
  domain(<d:non-physical-endurant>) 
  range(d:endurant)) 
 ObjectProperty(<n:material-place> 
  inverseOf(<n:material-place-of>) 
  domain(<d:physical-endurant>) 
  range(<d:physical-endurant>)) 
 ObjectProperty(<n:material-place-of> 
  inverseOf(<n:material-place>) 
  domain(<d:physical-endurant>) 
  range(<d:physical-endurant>)) 
 ObjectProperty(n:origin 
  inverseOf(<n:origin-of>) 
  domain(<d:physical-endurant>) 
  range(<d:physical-endurant>)) 
 ObjectProperty(<n:origin-of> 
  inverseOf(n:origin) 
  domain(<d:physical-endurant>) 
  range(<d:physical-endurant>)) 
 ObjectProperty(<n:p-spatial-location> 
  inverseOf(<n:p-spatial-location-of>) 
  domain(d:perdurant) 
  range(<d:space-region>)) 
 ObjectProperty(<n:p-spatial-location-of> 
  inverseOf(<n:p-spatial-location>) 
  domain(<d:space-region>) 
  range(d:perdurant)) 
 ObjectProperty(<n:participant-place> 
  inverseOf(<n:participant-place-of>) 
  domain(d:perdurant) 
  range(d:endurant)) 
 ObjectProperty(<n:participant-place-of> 
  inverseOf(<n:participant-place>) 
  domain(d:endurant) 
  range(d:perdurant)) 
 ObjectProperty(n:place 
  inverseOf(<n:place-of>) 
  domain(d:endurant) 
  range(<d:physical-endurant>)) 
 ObjectProperty(<n:place-of> 
  inverseOf(n:place) 
  domain(<d:physical-endurant>) 
  range(d:endurant)) 
 ObjectProperty(<n:situation-place> 
  inverseOf(<n:situation-place-of>) 
  domain(c:situation) 
  range(d:endurant)) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 103 of 140 

 ObjectProperty(<n:situation-place-of> 
  inverseOf(<n:situation-place>) 
  domain(d:endurant) 
  range(c:situation)) 
 ObjectProperty(<n:spatial-location> 
  inverseOf(<n:spatial-location-of>) 
  domain(<d:physical-endurant>) 
  range(<d:space-region>)) 
 ObjectProperty(<n:spatial-location-of> 
  inverseOf(<n:spatial-location>) 
  domain(<d:space-region>) 
  range(<d:physical-endurant>)) 
 ObjectProperty(<o:functionally-unified-by> 
  inverseOf(<o:functionally-unifies>) 
  domain(<d:physical-object>) 
  range(c:description)) 
 ObjectProperty(<o:functionally-unifies> 
  inverseOf(<o:functionally-unified-by>) 
  domain(c:description) 
  range(<d:physical-object>)) 
 ObjectProperty(<b:concluded-by> 
  inverseOf(b:concludes) 
  domain(d:perdurant) 
  range(d:perdurant)) 
 ObjectProperty(b:concludes 
  inverseOf(<b:concluded-by>) 
  domain(d:perdurant) 
  range(d:perdurant)) 
 ObjectProperty(<b:e-temporal-location> 
  inverseOf(<b:e-temporal-location-of>) 
  domain(d:endurant) 
  range(<d:temporal-region>)) 
 ObjectProperty(<b:e-temporal-location-of> 
  inverseOf(<b:e-temporal-location>) 
  domain(<d:temporal-region>) 
  range(d:endurant)) 
 ObjectProperty(b:follows Transitive 
  inverseOf(b:precedes) 
  domain(d:perdurant) 
  range(d:perdurant)) 
 ObjectProperty(b:meets 
  inverseOf(<b:met-by>) 
  domain(d:perdurant) 
  range(d:perdurant)) 
 ObjectProperty(<b:met-by> 
  inverseOf(b:meets) 
  domain(d:perdurant) 
  range(d:perdurant)) 
 ObjectProperty(b:precedes Transitive 
  inverseOf(b:follows) 
  domain(d:perdurant) 
  range(d:perdurant)) 
 ObjectProperty(<b:present-at> 
  inverseOf(<b:time-of-presence-of>) 
  domain(d:endurant) 
  range(<d:time-interval>)) 
 ObjectProperty(<b:started-by> 
  inverseOf(b:starts) 
  domain(d:perdurant) 
  range(d:perdurant)) 
 ObjectProperty(b:starts 
  inverseOf(<b:started-by>) 
  domain(d:perdurant) 
  range(d:perdurant)) 
 ObjectProperty(<b:temporal-location> 
  inverseOf(<b:temporal-location-of>) 
  domain(d:perdurant) 
  range(<d:temporal-region>)) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 104 of 140 

 ObjectProperty(<b:temporal-location-of> 
  inverseOf(<b:temporal-location>) 
  domain(<d:temporal-region>) 
  range(d:perdurant)) 
 ObjectProperty(<b:temporal-relation> 
  inverseOf(<b:temporal-relation-i>) 
  domain(d:perdurant) 
  range(d:perdurant)) 
 ObjectProperty(<b:temporal-relation-i> 
  inverseOf(<b:temporal-relation>) 
  domain(d:perdurant) 
  range(d:perdurant)) 
 ObjectProperty(<b:temporally-coincides> 
  inverseOf(<b:temporally-coincides>) 
  domain(d:perdurant) 
  range(d:perdurant)) 
 ObjectProperty(<b:temporally-connected> 
  inverseOf(<b:temporally-connected>) 
  domain(d:perdurant) 
  range(d:perdurant)) 
 ObjectProperty(<b:temporally-included-in> 
  inverseOf(<b:temporally-includes>) 
  domain(d:perdurant) 
  range(d:perdurant)) 
 ObjectProperty(<b:temporally-includes> 
  inverseOf(<b:temporally-included-in>) 
  domain(d:perdurant) 
  range(d:perdurant)) 
 ObjectProperty(<b:temporally-overlaps> 
  inverseOf(<b:temporally-overlaps>) 
  domain(d:perdurant) 
  range(d:perdurant)) 
 ObjectProperty(<b:time-of-presence-of> 
  inverseOf(<b:present-at>) 
  domain(<d:time-interval>) 
  range(d:endurant)) 
 
 DatatypeProperty(<a:counted-by> 
  domain(d:region) 
  range(xsd:integer)) 
 DatatypeProperty(<a:has-informal-description> 
  domain(d:particular) 
  range(xsd:string)) 
 DatatypeProperty(f:title 
  domain(<c:information-object>) 
  range(xsd:string)) 
 DatatypeProperty(<e:iteration-cardinality> 
  domain(c:task) 
  range(xsd:integer)) 
 
 Class(k:action partial  
  restriction(<d:generically-dependent-on> someValuesFrom(<k:cognitive-state>)) 
  d:accomplishment 
  restriction(d:participant someValuesFrom(unionOf(<d:agentive-social-object> <d:agentive-physical-object>)))) 
 Class(k:action partial  
  annotation(rdfs:comment "A Perdurant that exemplifies the intentionality of an agent. Could it be aborted, incomplete, 
mislead, while remaining a (potential) accomplishment ... The point here is that having a result depends on a method, then an 
action remains an action under incomplete results. As a matter of fact, if we neutralize intentionality, a purely topological, 
post-hoc view is at odds with the notion of incomplete accomplishments.") 
) 
 Class(k:activity partial  
  restriction(<d:generically-dependent-on> someValuesFrom(c:course)) 
  k:action 
  restriction(<c:sequenced-by> someValuesFrom(c:course))) 
 Class(k:activity partial  
  annotation(rdfs:comment "In dependency terms, an activity is an action that is generically constantly dependent on a 
conventional, shared description (course) adopted by participants. Intuitively, activities are complex actions that are at least 
partly conventionally planned.") 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 105 of 140 

) 
 Class(<k:agent-driven-role> complete  
  intersectionOf(c:role restriction(<c:played-by> allValuesFrom(unionOf(<d:agentive-social-object> <d:agentive-physical-
object>))))) 
 Class(<k:agent-driven-role> partial  
  annotation(rdfs:comment "AKA Agentive-role. 
 
A role that can only be played by agents.") 
) 
 Class(<k:cognitive-agentive-physical-object> complete  
  intersectionOf(restriction(c:conceives someValuesFrom(c:plan)) <d:agentive-physical-object>)) 
 Class(<k:cognitive-agentive-physical-object> partial  
  annotation(rdfs:comment "An agentive physical object that is able to have desires and intentions, besides beliefs. In this 
ontology, this is encoded as having the ability to conceive plans.") 
) 
 Class(<k:cognitive-event> partial  
  d:event 
  restriction(m:substrate someValuesFrom(<d:natural-person>))) 
 Class(<k:cognitive-event> partial  
  annotation(rdfs:comment "An event occurring in the (embodied) mind.") 
) 
 Class(<k:cognitive-state> partial  
  d:state 
  restriction(m:substrate someValuesFrom(<d:natural-person>))) 
 Class(<k:cognitive-state> partial  
  annotation(rdfs:comment "A state of the (embodied) mind") 
) 
 Class(k:flux complete  
  intersectionOf(d:process restriction(<d:specific-constant-constituent> someValuesFrom(d:accomplishment)))) 
 Class(k:flux partial  
  annotation(rdfs:comment "Fluxes are processes that (also) contain accomplishments as constituents. In other words, fluxes 
emerge out of accomplishments.") 
) 
 Class(k:indicator partial  
  c:parameter) 
 Class(k:indicator partial  
  annotation(rdfs:comment "A parameter valued by regions that are used asindicators for some behaviour or event to be 
checked.") 
) 
 Class(<k:life-cycle> complete  
  intersectionOf(c:course restriction(c:sequences allValuesFrom(restriction(<d:life-of> someValuesFrom(d:endurant)))))) 
 Class(<k:life-cycle> partial  
  annotation(rdfs:comment "The course of events typical of the life of an object (kind).") 
) 
 Class(<k:reconstructed-flux> complete  
  intersectionOf(restriction(d:part allValuesFrom(d:accomplishment)) k:flux)) 
 Class(<k:reconstructed-flux> partial  
  annotation(rdfs:comment "Reconstructed fluxes are fluxes that only contain  accomplishments as members.") 
) 
 Class(k:status partial  
  <c:social-role>) 
 Class(k:status partial  
  annotation(rdfs:comment "A role that involves responsibility, e.g. both duties and rights, in order to perform some task. It 
usually involves additional rights and/or powers in contexts (descriptions) different from the one that defines the status.") 
) 
 Class(j:collection complete  
  intersectionOf(<d:social-object> restriction(j:member allValuesFrom(d:endurant)) restriction(<j:covered-by> 
someValuesFrom(c:role)) restriction(j:member minCardinality(2)) restriction(j:member someValuesFrom(d:endurant)))) 
 Class(j:collection partial  
  annotation(rdfs:comment "Collections are social objects (either agentive or not), which are not defined by a description, but 
they depend both on member entities and on some concepts, figures, and indirectly on descriptions. While we could talk in 
general of collections of any kind of entities (events, objects, abstracts, etc.), we restrict here our attention to collections of 
endurants, and therefore to their roles (not to concepts whatsoever).") 
) 
 Class(<j:non-physical-collection> complete  
  intersectionOf(restriction(j:member someValuesFrom(<d:non-physical-object>)) j:collection restriction(j:member 
allValuesFrom(<d:non-physical-object>)) restriction(j:member minCardinality(2)))) 
 Class(<j:non-physical-collection> partial  



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 106 of 140 

  annotation(rdfs:comment "A collection of non-physical objects that is characterized by a conventional or emergent property, 
e.g. a corpus, a legal body, etc. 
A non-physical collection only has non-physical endurants as members.") 
) 
 Class(<j:organized-collection> complete  
  intersectionOf(restriction(<j:characterized-by> minCardinality(2)) j:collection restriction(<j:characterized-by> 
someValuesFrom(c:role)))) 
 Class(<j:organized-collection> partial  
  annotation(rdfs:comment "Organized collections introduce a different unity criterion for collections. They can be conceived 
as characterized by further roles played by some (or all) members of the collection, and related among them through the 
social objects (figures, descriptions, collections) that either use or depute or are covered by them.") 
) 
 Class(<j:parametrized-collection> complete  
  intersectionOf(<j:simple-collection> restriction(j:member allValuesFrom(restriction(<d:generic-location> 
someValuesFrom(restriction(<c:value-for> someValuesFrom(restriction(<c:requisite-for> someValuesFrom(c:role)))))))))) 
 Class(<j:parametrized-collection> partial  
  annotation(rdfs:comment "A type of simple collections are parametrized collections, whose members must have a quality 
constrained by some parameter that is a requisite of their covering role(s). 
 
For example, a crowd of people has members that have spatial positions in a range that makes them proximal (a condition 
traditionally used to distinguish so-called aggregates (King 2004)). 
 
On the other hand, if positions are reciprocally relevant (as, for instance, in a living chess setting) according to multiple roles 
defined by some plan or design, the collection becomes organized.") 
) 
 Class(<j:physical-plurality> complete  
  intersectionOf(restriction(<d:proper-part> allValuesFrom(restriction(<j:member-of> cardinality(1)))) <d:physical-object>)) 
 Class(<j:physical-plurality> partial  
  annotation(rdfs:comment "a.k.a. unitary collection in D18. 
 
The physical counterpart (realization) of a collection.  
A collection (see) is characterized by a conventional or emergent property. 
Physical pluralities have as *proper parts* only physical objects that are *members* of a same collection.") 
) 
 Class(<j:simple-collection> complete  
  intersectionOf(restriction(<j:characterized-by> allValuesFrom(complementOf(c:role))) j:collection)) 
 Class(<j:simple-collection> partial  
  annotation(rdfs:comment "A simple collection (for instance, a collection of saxophones, or a mass of lymphocytes ) is a 
collection having only covering roles.") 
) 
 Class(<j:taxonomic-collection> partial  
  <j:simple-collection>) 
 Class(<j:taxonomic-collection> partial  
  annotation(rdfs:comment "A simple collection covered by roles corresponding to natural science properties ascribed to 
members.") 
) 
 Class(<l:biological-collective> partial  
  <l:type-based-collective>) 
 Class(<l:biological-collective> partial  
  annotation(rdfs:comment "Biological collectives are type-based collectives that are *covered* by roles typical of the 
biological world. 
They can be divided into various kinds (genetic, taxonomic, epidemiological, etc.). 
Biological properties produce either crisp or fuzzy/probabilistic types.") 
) 
 Class(l:collective complete  
  intersectionOf(<d:agentive-social-object> j:collection restriction(j:member allValuesFrom(unionOf(<d:agentive-social-
object> <d:agentive-physical-object>))))) 
 Class(l:collective partial  
  annotation(rdfs:comment "A collection whose members are only agents.") 
) 
 Class(<l:ecological-collective> partial  
  <l:organized-collective>) 
 Class(<l:ecological-collective> partial  
  annotation(rdfs:comment "An organized collective that receives its organization from the characterizing roles of social 
interaztion between organisms in a niche.") 
) 
 Class(<l:genetic-collective> partial  



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 107 of 140 

  <l:biological-collective>) 
 Class(<l:genetic-collective> partial  
  annotation(rdfs:comment "A biological collective covered by genetic roles (whose members are identified by means of the 
genetic properties ascribed to them).") 
) 
 Class(<l:intentional-collective> partial  
  restriction(<j:unified-by> someValuesFrom(intersectionOf(restriction(<c:d-uses> 
someValuesFrom(restriction(j:characterizes someValuesFrom(<l:intentional-collective>)))) c:plan))) 
  <l:organized-collective>) 
 Class(<l:intentional-collective> partial  
  annotation(rdfs:comment "We use the presence and structure of a unifying plan in order to characterize kinds of collectives. 
A preliminary consideration is that plan unification can have two senses. 
The first one only takes into account the action schemas executed by the members, who do not necessarily interact in a 
?global? way. In other words, the roles played by members cover the collective, because they are (dispositionally) played by 
each member. 
The second sense is richer, and assumes that the unifying (maximal) plan (d-)uses roles that characterize (are played by some 
members, and related between them in a typical way) the collective. 
The first sense of plan unification is applicable to a subclass of simple collectives that we call here 'simple-planned-
collectives'. 
The second sense of plan unification applies to intentional collectives proper. 
 
An intentional collective acts intentionally because its members act, and because it is unified by a plan that is conceived by 
some cognitive agent. Therefore, there is nothing special in a collective being intentional: it is just a matter of having a plan 
and agentive members playing its characterizing roles. What is special is the distinction between the diversified ways of 
acting collectively (see subclasses).") 
) 
 Class(<l:organized-collective> complete  
  intersectionOf(l:collective <j:organized-collection>)) 
 Class(<l:organized-collective> partial  
  annotation(rdfs:comment "An organized collection whose only members are agents.") 
) 
 Class(<l:simple-collective> complete  
  intersectionOf(restriction(<j:unified-by> allValuesFrom(complementOf(intersectionOf(c:plan restriction(<c:d-uses> 
someValuesFrom(restriction(j:characterizes someValuesFrom(<l:intentional-collective>)))))))) <j:simple-collection> 
l:collective)) 
 Class(<l:simple-collective> partial  
  annotation(rdfs:comment "A simple collection whose members are only agents.") 
) 
 Class(<l:simple-planned-collective> partial  
  <l:simple-collective>) 
 Class(<l:simple-planned-collective> partial  
  annotation(rdfs:comment "We use the presence and structure of a unifying plan in order to characterize kinds of collectives. 
A preliminary consideration is that plan unification can have two senses. 
The first one only takes into account the action schemas executed by the members, who do not necessarily interact in a 
?global? way. In other words, the roles played by members cover the collective, because they are (dispositionally) played by 
each member. 
The second sense is richer, and assumes that the unifying (maximal) plan (d-)uses roles that characterize the collective. 
The first sense of plan unification is applicable to a subclass of simple collectives that we call here 'simple-planned-
collectives'.") 
) 
 Class(<l:social-type-collective> partial  
  <l:type-based-collective> 
  restriction(<j:covered-by> someValuesFrom(<c:social-role>)) 
  restriction(<j:unified-by> someValuesFrom(unionOf(<c:social-relationship> c:practice)))) 
 Class(<l:social-type-collective> partial  
  annotation(rdfs:comment "Social type-based collectives are type-based collectives that are *covered* by roles typical of the 
social world. 
Social collectives are usually based on action schemas (practices, rather than plans, which are typical of intentional 
collectives). 
They can be distinguished into neighborhood, geographic (at various granularities), ethnic, linguistic, commercial, industrial, 
scientific, political, religious, institutional, administrative, professional, sportive, interest-based, stylistic, devotional, etc. 
 
WordNet contains an impressive set of social-type-based-collectives, which are encoded in the lexicon.") 
) 
 Class(<l:taxonomic-collective> complete  
  intersectionOf(<l:biological-collective> <j:taxonomic-collection>)) 
 Class(<l:taxonomic-collective> partial  



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 108 of 140 

  annotation(rdfs:comment "A simple collective covered by roles corresponding to natural science properties ascribed to 
members.") 
) 
 Class(<l:type-based-collective> partial  
  <l:simple-collective>) 
 Class(<l:type-based-collective> partial  
  annotation(rdfs:comment "Collectives can be classified according to different property kinds. The first one is the type of 
members (e.g. physical persons, boys, cows, left-handers, etc.). Types are used in traditional classifications.  
For example, biological collectives can be distinguished from social collectives, based on the (biological or social) properties 
ascribed to members.") 
) 
 Class(<a:biological-object> partial  
  <a:physical-body> 
  restriction(<d:generic-constituent> someValuesFrom(<a:chemical-object>))) 
 Class(<a:biological-object> partial  
  annotation(rdfs:comment "Any physical body at the biological granularity level. They are (generically) constituted by 
chemical objects.") 
) 
 Class(<a:causal-role> partial  
  c:role) 
 Class(<a:causal-role> partial  
  annotation(rdfs:comment "A role defined (not just used!) by a causal description, and exploited to conceptualize some 
causation invariants. 
Causal notions are still primitive in this version of DLP.") 
) 
 Class(<a:chemical-object> partial  
  <a:physical-body>) 
 Class(<a:chemical-object> partial  
  annotation(rdfs:comment "Any physical body at the chemical granularity level.") 
) 
 Class(<a:collection-role> complete  
  intersectionOf(restriction(<c:played-by> allValuesFrom(j:collection)) c:role)) 
 Class(<a:collection-role> partial  
  annotation(rdfs:comment "A role only played by collections.") 
) 
 Class(<a:commerce-role> partial  
  <c:social-role>) 
 Class(<a:commerce-role> partial  
  annotation(rdfs:comment "A role played by some substance or object within a commercial transaction description.") 
) 
 Class(a:contract partial  
  c:regulation 
  restriction(d:part someValuesFrom(h:promise))) 
 Class(a:contract partial  
  annotation(rdfs:comment "A binding agreement that is possibly enforceable by law.") 
) 
 Class(a:country partial  
  <a:political-geographic-object> 
  restriction(<d:generically-dependent-on> someValuesFrom(<a:physical-place>))) 
 Class(a:country partial  
  annotation(rdfs:comment "A political geographic object that is (generically) dependent on some physical place (in principle, 
countries can change their borders).") 
) 
 Class(<a:creative-object> partial  
  <c:information-object>) 
 Class(<a:creative-object> partial  
  annotation(rdfs:comment "The information realized by an entity for creative purposes. Here mainly for mapping purpose 
from WordNet.") 
) 
 Class(<a:description-role> complete  
  intersectionOf(c:role restriction(<c:played-by> allValuesFrom(c:description)))) 
 Class(<a:description-role> partial  
  annotation(rdfs:comment "A role played by descriptions only. Usable for metalinguistic notions, like those that deal with 
granular partitions of knowledge, strata of reality, argumentation, etc.") 
) 
 Class(<a:feature-role> partial  
  c:role) 
 Class(<a:feature-role> partial  



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 109 of 140 

  annotation(rdfs:comment "A role played by some feature of a physical object.") 
) 
 Class(<a:functional-matter> complete  
  intersectionOf(restriction(c:plays someValuesFrom(c:role)) <d:amount-of-matter>)) 
 Class(<a:functional-matter> partial  
  restriction(<m:used-in> someValuesFrom(k:activity))) 
 Class(<a:functional-matter> partial  
  annotation(rdfs:comment "Amount of matter playing a typically 'functional' role at some time in some situation.") 
) 
 Class(<a:geographical-object> partial  
  <a:physical-place>) 
 Class(<a:geographical-object> partial  
  annotation(rdfs:comment "A physical place whose spatial quality is q-located in geographical coordinates.") 
) 
 Class(<a:geographical-place> partial  
  restriction(<d:generically-dependent-on> someValuesFrom(<a:geographical-object>)) 
  <a:non-physical-place>) 
 Class(<a:geographical-place> partial  
  annotation(rdfs:comment "A non-physical place, generically dependent on some (physical) geographical object.") 
) 
 Class(<a:legal-possession-entity> partial  
  <c:social-role>) 
 Class(<a:legal-possession-entity> partial  
  annotation(rdfs:comment "A role played by assets involved in a legal possession description.") 
) 
 Class(<a:locative-role> partial  
  restriction(<c:played-by> allValuesFrom(unionOf(<a:non-physical-place> <d:physical-object>))) 
  c:role) 
 Class(<a:locative-role> partial  
  annotation(rdfs:comment "This is a role (e.g. closed area) for places. Locative roles are played by physical objects (in 
locational cases, physical places), as well as non-physical places (individual places depending on a physical object).") 
) 
 Class(<a:logical-role> partial  
  <a:description-role>) 
 Class(<a:logical-role> partial  
  annotation(rdfs:comment "A role used to express logical levels within some layering description or granular partition. A 
typical example is the Linnean taxonomic ordering, where Phylum or Species are hierarchical roles.") 
) 
 Class(<a:material-artifact> partial  
  restriction(<d:proper-part> someValuesFrom(restriction(<j:member-of> someValuesFrom(intersectionOf(j:collection 
restriction(<j:unified-by> someValuesFrom(unionOf(c:project c:plan)))))))) 
  <d:non-agentive-physical-object>) 
 Class(<a:material-artifact> partial  
  annotation(rdfs:comment "No easy definition of artifactual properties is possible, hence it is better to rely on alternative 
descriptions and roles: a physical object that shows or is known to have an artifactual origin that counts in the tasks an 
ontology is supposed to support, will be a material artifact. 
On the other hand, physical objects that do not show that origin, or that origin is unimportant for the task of the ontology, will 
be physical bodies. 
Formally, a restriction is provided here that requires that the collection whose members are (at least some of the) proper parts 
of a material artifact is *unified* by a plan or project.") 
) 
 Class(<a:non-physical-place> partial  
  c:figure 
  restriction(<d:generically-dependent-on> someValuesFrom(<a:physical-place>))) 
 Class(<a:non-physical-place> partial  
  annotation(rdfs:comment "A figure (e.g. Italy) for non-physical (i.e. socially- or cognitively-constructed) places. 
Non-physical places generically depend on physical places.") 
) 
 Class(a:norm partial  
  restriction(c:involves someValuesFrom(d:agent)) 
  c:regulation) 
 Class(a:norm partial  
  annotation(rdfs:comment "A regulation having an agent obligation as part.") 
) 
 Class(a:path partial  
  c:course 
  restriction(c:sequences someValuesFrom(a:phenomenon))) 
 Class(a:path partial  



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 110 of 140 

  annotation(rdfs:comment "A course used to sequence phenomena (non-intentional processes).") 
) 
 Class(<a:phase-role> partial  
  c:role) 
 Class(<a:phase-role> partial  
  annotation(rdfs:comment "Formerly: (non-) agentive temporary role. 
A role for talking of someone or something at certain phases of own life. It can be used also to map temporal parts of 
agentive objects from a 4D ontology.") 
) 
 Class(a:phenomenon partial  
  d:accomplishment) 
 Class(a:phenomenon partial  
  annotation(rdfs:comment "A phenomenon is basically a process that does not include any intentional active participation.  
It can be seen as an accomplishment when some intentionality puts boundaries on it (although it is not claimed to be 
inherently  intentional). On the other hand, a purely physical phenomenon does not seem to have inherent boundaries either ... 
and also for biological processes as well as economic processes this seems to be disputable. If the boundary hypothesis is 
discarded, phenomenon should migrate under process.") 
) 
 Class(<a:physical-body> partial  
  <d:non-agentive-physical-object> 
  restriction(<d:proper-part> allValuesFrom(restriction(<j:member-of> 
someValuesFrom(intersectionOf(restriction(<j:unified-by> allValuesFrom(complementOf(unionOf(c:project c:plan)))) 
j:collection)))))) 
 Class(<a:physical-body> partial  
  annotation(rdfs:comment "A physical body is a non-agentive physical object whose primary identity criterion is not given 
by its artefactual origin, if any. For example, a rock or a tree can be considered physical bodies unless or until they are not 
viewed as artifacts. 
As a matter of fact, no easy definition of artifactual properties is possible, hence it is better to rely on alternative descriptions 
and roles: a physical object that shows or is known to have an artifactual origin that counts in the tasks an ontology is 
supposed to support, will be a material artifact. 
On the other hand, physical objects that do not show that origin, or that origin is unimportant for the task of the ontology, will 
be physical bodies. 
Formally, a restriction is provided here that requires that the collection whose members are proper parts of a physical body is 
not *unified* by a plan or project. 
BTW, a physical body can still be a *device*, can be 'used' and have 'functions' (roles), e.g. a stone used as a weapon, but it 
plays no role like being produced, as material artifacts do. Moreover, a collection whose members are proper parts of a 
physical body can still be unified by a description (e.g. a biochemical model). 
 
Physical bodies can have several granularity levels: geological, chemical, physical, biological, etc.") 
) 
 Class(<a:physical-phenomenon> partial  
  a:phenomenon 
  restriction(d:participant someValuesFrom(<d:physical-endurant>))) 
 Class(<a:physical-phenomenon> partial  
  annotation(rdfs:comment "A phenomenon having a physical endurant as participant.") 
) 
 Class(<a:physical-place> partial  
  <d:non-agentive-physical-object>) 
 Class(<a:physical-place> partial  
  annotation(rdfs:comment "A placeholder for physical objects that are conceived primarily as places, e.g. wrt their spatial 
quality.") 
) 
 Class(<a:political-geographic-object> partial  
  <a:geographical-place>) 
 Class(<a:political-geographic-object> partial  
  annotation(rdfs:comment "A geographical place, conventionally accepted by a community.") 
) 
 Class(<a:qualitative-role> partial  
  c:role) 
 Class(<a:qualitative-role> partial  
  annotation(rdfs:comment "A placeholder for some roles in common sense that do not easily map to other types of roles. 
More work is needed here.") 
) 
 Class(<a:spatial-feature> partial  
  <d:relevant-part>) 
 Class(<a:spatial-feature> partial  
  annotation(rdfs:comment "A feature related to spatial properties.") 
) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 111 of 140 

 Class(<a:substance-role> partial  
  c:role 
  restriction(<c:played-by> allValuesFrom(<d:amount-of-matter>))) 
 Class(<a:substance-role> partial  
  annotation(rdfs:comment "A role played by some substance.") 
) 
 Class(d:abstract partial  
  restriction(<d:has-quality> allValuesFrom(complementOf(<d:temporal-location_q>))) 
  d:particular 
  restriction(<d:has-quality> allValuesFrom(complementOf(<d:spatial-location_q>)))) 
 Class(d:abstract partial  
  annotation(rdfs:comment "The main characteristic of abstract entities is that  they do not have spatial nor temporal qualities, 
and they are not qualities themselves.  The only class of abstract entities we consider in the present version of the upper  
ontology is that of quality regions (or simply regions). Quality spaces are special  kinds of quality regions, being 
mereological sums of all the regions related to a certain  quality type. The other examples of abstract entities (sets and facts) 
are only  indicative.") 
) 
 Class(<d:abstract-quality> partial  
  restriction(<d:inherent-in> allValuesFrom(<d:non-physical-endurant>)) 
  restriction(<d:inherent-in> someValuesFrom(<d:non-physical-endurant>)) 
  restriction(<d:q-location> allValuesFrom(<d:abstract-region>)) 
  d:quality 
  restriction(<d:has-quality> allValuesFrom(<d:abstract-quality>))) 
 Class(<d:abstract-quality> partial  
  annotation(rdfs:comment "A quality inherent in a non-physical endurant.") 
) 
 Class(<d:abstract-region> partial  
  restriction(d:part allValuesFrom(<d:abstract-region>)) 
  d:region 
  restriction(<d:q-location-of> allValuesFrom(<d:abstract-quality>))) 
 Class(<d:abstract-region> partial  
  annotation(rdfs:comment "A region at which only abstract qualities can be directly located. It assumes some metrics for 
abstract (neither physical nor temporal) properties.") 
) 
 Class(d:accomplishment partial  
  d:event) 
 Class(d:accomplishment partial  
  annotation(rdfs:comment "Eventive occurrences (events) are called achievements if they are atomic, otherwise they are 
accomplishments. 
Further developments: being 'achievement', 'accomplishment', 'state', 'event', etc. can be also considered 'aspects' of processes 
or of parts of them.  
For example, the same process 'rock erosion in the Sinni valley' can be seen as an accomplishment (what has brought the 
current state that e.g. we are trying to explain), as an achievement (the erosion process as the result of a previous 
accomplishment), as a state (collapsing the time interval of the erosion into a time point), as an event (what has changed our 
focus from a state to another). 
In the erosion case, we could have good motivations to shift from one aspect to another: a) causation focus, b) effectual 
focus, c) condensation d) transition (causality).") 
) 
 Class(d:achievement partial  
  d:event) 
 Class(d:achievement partial  
  annotation(rdfs:comment "Eventive occurrences (events) are called achievements  if they are atomic, otherwise they are 
accomplishments. 
Further developments: being 'achievement', 'accomplishment', 'state', 'event', etc. can be also considered 'aspects' of processes 
or of parts of them.  
For example, the same process 'rock erosion in the Sinni valley' can be seen as an accomplishment (what has brought the 
current state that e.g. we are trying to explain), as an achievement (the erosion process as the result of a previous 
accomplishment), as a state (collapsing the time interval of the erosion into a time point), as an event (what has changed our 
focus from a state to another). 
In the erosion case, we could have good motivations to shift from one aspect to another: a) causation focus, b) effectual 
focus, c) condensation d) transition (causality).") 
) 
 Class(d:agent complete  
  intersectionOf(d:endurant unionOf(<d:agentive-social-object> <d:agentive-physical-object>))) 
 Class(d:agent partial  
  annotation(rdfs:comment "A dummy class used to join agentive objects (either physical or social). 
Agents are dispositionally so, in the sense that they are able to conceive descriptions and possible actions, but they do not 
necessarily act. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 112 of 140 

 
In everyday language, agent is used in this sense, but also to tell that something has acted in a certain way, or to say that 
something has an initiator or leading role in some action. In DLP, the performs relation encodes these notions.") 
) 
 Class(<d:agentive-physical-object> complete  
  intersectionOf(restriction(c:conceives someValuesFrom(c:description)) d:agent <d:physical-object>)) 
 Class(<d:agentive-physical-object> partial  
  annotation(rdfs:comment "Within Physical objects, a special place have  those to which we ascribe generic intentionality 
(compatibly to Brentano's distinction, the ability to conceive a description). These are called Agentive,  as opposite to Non-
agentive.  
In general, we assume that agentive objects are constituted by non-agentive objects: a person is constituted by an organism, a 
robot is constituted by some machinery, and  so on. Among non-agentive physical objects we have for example houses, body 
organs,  pieces of wood, etc. 
Generic agentivity is defined here in a wide sense as implying conception (to be characterized in a dedicated ? but not 
developed as yet ? ontology of mind). A conception only requires intentionality in Brentano?s terms (i.e., the ability to 
represent something to oneself). 
See also 'cognitive agentive physical object'.") 
) 
 Class(<d:agentive-social-object> complete  
  intersectionOf(<d:social-object> restriction(c:conceives someValuesFrom(c:description)) d:agent)) 
 Class(<d:agentive-social-object> partial  
  annotation(rdfs:comment "A social object that is assumed to have intentionality (in the wider sense of conceiving some 
description). 
Since a social object is dependent on physical ones, it is not trivial to interpret the local sense in which a social object 
'conceives' a description. 
For example, an institution can have the belief in the existence of some physical person, but this is possible by means of the 
powers conferred by some legal system, through its representatives, and that belief has to verified or 'used' by means of the 
physical agents that 'act for' the institution. 
A different sense of social object conceiving descriptions holds for collectives, which ground the overall conception on either 
a shared, or distributed, or external description conceived by either members of the collective, or by some non-member 
agent.") 
) 
 Class(<d:amount-of-matter> partial  
  <d:physical-endurant>) 
 Class(<d:amount-of-matter> partial  
  annotation(rdfs:comment "The common trait of amounts of matter is that they are endurants with no unity (according to 
Gangemi et a. 2001 none of them is an essential  whole). Amounts of matter - 'stuffs' referred to by mass nouns like 'gold', 
'iron', 'wood',  'sand', 'meat', etc. - are mereologically  invariant, in the sense that they change their  identity when they change 
some parts.") 
) 
 Class(<d:arbitrary-sum> partial  
  d:endurant 
  restriction(d:part someValuesFrom(d:endurant)) 
  restriction(d:part minCardinality(2))) 
 Class(<d:arbitrary-sum> partial  
  annotation(rdfs:comment "AKA arbitrary-collection. 
The mereological sum of any two or more endurants (physical or not). Arbitrary sums have no unity criterion (they are 
'extensional').") 
) 
 Class(d:atom complete  
  intersectionOf(d:particular restriction(<d:proper-part> allValuesFrom(complementOf(d:particular))))) 
 Class(d:atom partial  
  annotation(rdfs:comment "A particular with no proper parts.") 
) 
 Class(<d:atomic-interval> complete  
  intersectionOf(<d:time-interval> restriction(d:part allValuesFrom(complementOf(<d:time-interval>))))) 
 Class(<d:atomic-interval> partial  
  annotation(rdfs:comment "A time interval with no proper parts (within the clocktick chosen for the time-interval quality 
space).") 
) 
 Class(<d:communication-event> partial  
  d:accomplishment) 
 Class(<d:communication-event> partial  
  annotation(rdfs:comment "Here communication is taken in a rather wide sense, being possible as an (intentional) activity as 
well as a phenomenon.") 
) 
 Class(<d:dependent-place> partial  
  d:feature) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 113 of 140 

 Class(<d:dependent-place> partial  
  annotation(rdfs:comment "A feature that is not part of its host, like a hole in a piece of cheese, the underneath of a table, the 
front of a house, or the shadow of a tree.") 
) 
 Class(d:endurant partial  
  restriction(<d:participant-in> allValuesFrom(d:perdurant)) 
  restriction(<d:participant-in> someValuesFrom(d:perdurant)) 
  restriction(<d:specific-constant-constituent> allValuesFrom(d:endurant)) 
  d:particular 
  restriction(d:part allValuesFrom(d:endurant))) 
 Class(d:endurant partial  
  annotation(rdfs:comment "The main characteristic of endurants is that all of them are independent essential wholes. This 
does not mean that the corresponding property (being an endurant) carries proper unity, since there is  no common unity 
criterion for endurants. Endurants can 'genuinely' change in time,  in the sense that the very same endurant as a whole can 
have incompatible properties  at different times. To see this, suppose that an endurant say 'this paper' has a  property at a time 
t 'it's white', and a different, incompatible property at time t'  'it's yellow': in both cases we refer to the whole object, without 
picking up any  particular part of it. Within endurants, we distinguish between physical and non-physical  endurants, 
according to whether they have direct spatial qualities. Within physical  endurants, we distinguish between amounts of 
matter, objects, and features.") 
) 
 Class(d:event partial  
  d:perdurant) 
 Class(d:event partial  
  annotation(rdfs:comment "An occurrence-type is stative or eventive according  to whether it holds of the mereological sum 
of two of its instances, i.e. if it is cumulative or not. A sitting occurrence is stative since the sum of two sittings is still a 
sitting occurrence. 
 
In general, events differ from situations because they are not assumed to have a description from which they depend. They 
can be sequenced by some course, but they do not require a description as a unifying criterion. 
On the other hand, at any time, one can conceive a description that asserts the constraints by which an event of a certian type 
is such, and in this case, it becomes a situation. 
Since the decision of designing an explicit description that unifies a perdurant depends on context, task, interest, application, 
etc., when aligning an ontology do DLP, there can be indecision on where to align an event-oriented class.  
For example, in the WordNet alignment, we have decided to put only some physical events under 'event', e.g. 'discharge', in 
order to stress the social orientedness of DLP. But whereas we need to talk explicitly of the criteria by which we conceive 
discharge events, these will be put under 'situation'. 
Similar considerations are made for the other types of perdurants in DOLCE. 
 
A different notion of event (dealing with change) is currently investigated for further developments: being 'achievement', 
'accomplishment', 'state', 'event', etc. can be also considered 'aspects' of processes or of parts of them.  
For example, the same process 'rock erosion in the Sinni valley' can be conceptualized as an accomplishment (what has 
brought the current state that e.g. we are trying to explain), as an achievement (the erosion process as the result of a previous 
accomplishment), as a state (if we collapse the time interval of the erosion into a time point), or as an event (what has 
changed our focus from a state to another). 
In the erosion case, we could have good motivations to shift from one aspect to another: a) causation focus, b) effectual 
focus, c) condensation d) transition (causality). 
 
If we want to consider all the aspects of a process together, we need to postulate a unifying descriptive set of criteria (i.e. a 
'description'), according to which that process is circumstantiated in a 'situation'. The different aspects will arise as a parts of 
a same situation.") 
) 
 Class(d:feature partial  
  <d:physical-endurant> 
  restriction(d:host someValuesFrom(<d:physical-endurant>))) 
 Class(d:feature partial  
  annotation(rdfs:comment "Features are 'parasitic entities', that exist insofar their host exists. Typical examples of features 
are holes, bumps, boundaries, or spots of color. Features may be relevant parts of their host, like a bump or an edge, or 
dependent regions like a hole in a piece of cheese, the underneath of a table, the front of a house, or the shadow of a tree, 
which are not parts of their host. All features are essential wholes, but no common unity criterion may exist for all of them. 
However, typical features have a topological unity, as they are singular entities. 
 
Here only features of physical endurants are considered.") 
) 
 Class(<d:measurement-unit> partial  
  <d:abstract-region>) 
 Class(<d:measurement-unit> partial  



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 114 of 140 

  annotation(rdfs:comment "A quality space used as a reference metrics (\"measurement space\") for other spaces. It is usually 
\"counted by\" some number.") 
) 
 Class(<d:mental-object> complete  
  intersectionOf(<d:non-physical-object> restriction(<d:specifically-constantly-dependent-on> 
someValuesFrom(<d:agentive-physical-object>)))) 
 Class(<d:mental-object> partial  
  annotation(rdfs:comment "AKA \"internal description\". Mental objects are dependent on an intentional agent. This class is 
just a pointer to a complex ontology of mental entities that is currently under development.") 
) 
 Class(<d:natural-person> partial  
  <d:agentive-physical-object>) 
 Class(<d:natural-person> partial  
  annotation(rdfs:comment "An agentive physical object, capable of 'acting for' a social individual. 
Socially-constructed persons, like legal ones, can be acted by natural persons, but are never identical to them, since social and 
physical objects are disjoint in DOLCE. As a consequence e.g. someone after death can no longer be a natural person, but in 
some legal systems, the legal counterpart (a socially-constructed person) can still exist for some legal contexts, e.g. for 
hereditary issues.") 
) 
 Class(<d:non-agentive-physical-object> partial  
  restriction(c:conceives cardinality(0)) 
  <d:physical-object>) 
 Class(<d:non-agentive-physical-object> partial  
  annotation(rdfs:comment "Within Physical objects, a special place have those  those to which we ascribe intentions, beliefs, 
and desires. These are called Agentive,  as opposite to Non-agentive. Intentionality is understood here as the capability of  
heading for/dealing with objects or states of the world. This is an important area  of ontological investigation we haven't 
properly explored yet, so our suggestions are  really very preliminary. A possible modelling of case roles has been started 
within the descriptions plugin  that could be embedded within basic DOLCE. In general, we assume that agentive objects are 
constituted by non-agentive objects: a  person is constituted by an organism, a robot is constituted by some machinery, and so 
on.  Among non-agentive physical objects we have for example houses, body organs, pieces of wood,  etc.") 
) 
 Class(<d:non-agentive-social-object> partial  
  <d:social-object> 
  restriction(c:conceives cardinality(0))) 
 Class(<d:non-agentive-social-object> partial  
  annotation(rdfs:comment "A social object that is not assumed to have intentionality (in the wider sense of conceiving some 
description). Since a social object is dependent on physical ones, it is not trivial to interpret the local sense in which a social 
object 'conceives' a description. See 'agentive-social-object' for some discussion.") 
) 
 Class(<d:non-physical-endurant> partial  
  d:endurant 
  restriction(d:part allValuesFrom(<d:non-physical-endurant>)) 
  restriction(<d:has-quality> allValuesFrom(<d:abstract-quality>))) 
 Class(<d:non-physical-endurant> partial  
  annotation(rdfs:comment "An endurant with no mass, generically constantly depending on some intentional agent. 
Non-physical endurants can have physical constituents (e.g. in the case of members of a collection).") 
) 
 Class(<d:non-physical-object> partial  
  restriction(<d:generically-dependent-on> someValuesFrom(<d:physical-endurant>)) 
  restriction(d:part allValuesFrom(<d:non-physical-object>)) 
  <d:non-physical-endurant>) 
 Class(<d:non-physical-object> partial  
  annotation(rdfs:comment "Formerly known as description. 
A unitary endurant with no mass (non-physical), generically constantly depending on some intentional agent, on some 
communication act, and indirectly on some agent participating in that act. 
Either descriptions (in the current sense), and concepts are non-physical objects.") 
) 
 Class(d:particular partial  
  annotation(rdfs:comment "AKA 'entity'. 
Any individual in the DOLCE domain of discourse. The extensional coverage of DOLCE is as large as possible, since it 
ranges on 'possibilia', i.e all possible individuals that can be postulated by means of DOLCE axioms. Possibilia include 
physical objects, substances, processes, qualities, conceptual regions, non-physical objects, collections and even arbitrary 
sums of objects. Extensions of DOLCE included in this ontology also feature 'situations' (qualified reifications of states of 
affairs).") 
) 
 Class(d:perdurant partial  
  restriction(<d:specific-constant-constituent> allValuesFrom(d:perdurant)) 
  restriction(<d:has-quality> someValuesFrom(<d:temporal-location_q>)) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 115 of 140 

  restriction(d:part allValuesFrom(d:perdurant)) 
  restriction(d:participant someValuesFrom(d:endurant)) 
  restriction(d:participant allValuesFrom(d:endurant)) 
  restriction(<d:has-quality> allValuesFrom(<d:temporal-quality>)) 
  d:particular) 
 Class(d:perdurant partial  
  annotation(rdfs:comment "Perdurants (AKA occurrences) comprise what are  variously called events, processes, 
phenomena, activities and states. They can have  temporal parts or spatial parts. For instance, the first movement of (an 
execution of)  a symphony is a temporal part of it. On the other side, the play performed by the left  side of the orchestra is a 
spatial part. In both cases, these parts are occurrences  themselves. We assume that objects cannot be parts of occurrences, 
but rather they  participate in them. Perdurants extend in time by accumulating different temporal parts,  so that, at any time 
they are present, they are only partially present, in the sense that  some of their proper temporal parts (e.g., their previous or 
future phases) may be not  present. E.g., the piece of paper you are reading now is wholly present, while some temporal  parts 
of your reading are not present any more. Philosophers say that endurants are  entities that are in time, while lacking however 
temporal parts (so to speak, all their  parts flow with them in time). Perdurants, on the other hand, are entities that happen  in 
time, and can have temporal parts (all their parts are fixed in time).") 
) 
 Class(<d:physical-endurant> partial  
  restriction(d:part allValuesFrom(<d:physical-endurant>)) 
  restriction(<d:has-quality> someValuesFrom(<d:physical-quality>)) 
  d:endurant 
  restriction(<d:has-quality> someValuesFrom(<d:spatial-location_q>)) 
  restriction(<d:specific-constant-constituent> allValuesFrom(<d:physical-endurant>)) 
  restriction(<d:has-quality> allValuesFrom(<d:physical-quality>))) 
 Class(<d:physical-endurant> partial  
  annotation(rdfs:comment "An endurant having a direct physical (at least spatial) quality.") 
) 
 Class(<d:physical-object> partial  
  <d:physical-endurant>) 
 Class(<d:physical-object> partial  
  annotation(rdfs:comment "The main characteristic of physical objects is that  they are endurants with unity. However, they 
have no common unity criterion, since  different subtypes of objects may  have different unity criteria. Differently from  
aggregates, (most) physical objects change some of their parts while keeping their  identity, they can have therefore 
temporary parts. Often physical objects (indeed,  all endurants) are ontologically independent from occurrences (discussed 
below).  However, if we admit that every object has a life, it is hard to exclude a mutual  specific constant dependence 
between the two. Nevertheless, we may still use the  notion of dependence to (weakly) characterize objects as being not 
specifically  constantly dependent on other objects.") 
) 
 Class(<d:physical-quality> partial  
  restriction(<d:q-location> allValuesFrom(<d:physical-region>)) 
  restriction(<d:inherent-in> allValuesFrom(<d:physical-endurant>)) 
  restriction(<d:has-quality> allValuesFrom(<d:physical-quality>)) 
  d:quality 
  restriction(<d:inherent-in> someValuesFrom(<d:physical-endurant>))) 
 Class(<d:physical-quality> partial  
  annotation(rdfs:comment "A quality inherent in a physical endurant.") 
) 
 Class(<d:physical-region> partial  
  restriction(d:part allValuesFrom(<d:physical-region>)) 
  d:region 
  restriction(<d:q-location-of> allValuesFrom(<d:physical-quality>))) 
 Class(<d:physical-region> partial  
  annotation(rdfs:comment "A region at which only physical qualities can be  directly located. It assumes some metrics for 
physical properties.") 
) 
 Class(d:process partial  
  d:stative) 
 Class(d:process partial  
  annotation(rdfs:comment "Within stative occurrences, we distinguish between  states and processes according to 
homeomericity: sitting is classified as a state  but running is classified as a process, since there are (very short) temporal parts  
of a running that are not themselves runnings. 
 
In general, processes differ from situations because they are not assumed to have a description from which they depend. They 
can be sequenced by some course, but they do not require a description as a unifying criterion. 
On the other hand, at any time, one can conceive a description that asserts the constraints by which a process of a certian type 
is such, and in this case, it becomes a situation. 
Since the decision of designing an explicit description that unifies a perdurant depends on context, task, interest, application, 
etc., when aligning an ontology do DLP, there can be indecision on where to align a process-oriented class.  



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 116 of 140 

For example, in the WordNet alignment, we have decided to put only some physical processes under 'process', e.g. 'organic 
process', in order to stress the social orientedness of DLP. But whereas we need to talk explicitly of the criteria by which we 
conceive organic processes, these will be put under 'situation'. 
Similar considerations are made for the other types of perdurants in DOLCE. 
 
A different notion of event (dealing with change) is currently investigated for further developments: being 'achievement', 
'accomplishment', 'state', 'event', etc. can be also considered 'aspects' of processes or of parts of them.  
For example, the same process 'rock erosion in the Sinni valley' can be conceptualized as an accomplishment (what has 
brought the current state that e.g. we are trying to explain), as an achievement (the erosion process as the result of a previous 
accomplishment), as a state (if we collapse the time interval of the erosion into a time point), or as an event (what has 
changed our focus from a state to another). 
In the erosion case, we could have good motivations to shift from one aspect to another: a) causation focus, b) effectual 
focus, c) condensation d) transition (causality). 
 
If we want to consider all the aspects of a process together, we need to postulate a unifying descriptive set of criteria (i.e. a 
'description'), according to which that process is circumstantiated in a 'situation'. The different aspects will arise as a parts of 
a same situation.") 
) 
 Class(d:proposition partial  
  d:abstract) 
 Class(d:proposition partial  
  annotation(rdfs:comment "The abstract content of a proposition. Abstract content is purely combinatorial: from this 
viewpoint, any content that can be generated by means of combinatorial rules is assumed to exist in the domain of 
quantification (reified abstracts).") 
) 
 Class(d:quale complete  
  intersectionOf(d:region d:atom restriction(<d:proper-part> allValuesFrom(complementOf(d:particular))))) 
 Class(d:quale partial  
  annotation(rdfs:comment "An atomic region.") 
) 
 Class(d:quality partial  
  restriction(<d:inherent-in> someValuesFrom(d:particular)) 
  restriction(<d:has-quality> allValuesFrom(d:quality)) 
  d:particular 
  restriction(<d:q-location> allValuesFrom(d:region))) 
 Class(d:quality partial  
  annotation(rdfs:comment "Qualities can be seen as the basic entities we can  perceive or measure: shapes, colors, sizes, 
sounds, smells, as well as weights, lengths,  electrical charges... 'Quality' is often used as a synonymous of 'property', but this 
is  not the case in this upper ontology: qualities are particulars, properties are universals.  Qualities inhere to entities: every 
entity (including qualities themselves) comes with  certain qualities, which exist as long as the entity exists.") 
) 
 Class(<d:quality-space> complete  
  intersectionOf(d:region restriction(d:overlaps allValuesFrom(complementOf(<d:quality-space>))))) 
 Class(<d:quality-space> partial  
  annotation(rdfs:comment "A quality space is a topologically maximal region. The constraint of maximality cannot be given 
completely in OWL, but a constraint is given that creates a partition out of all quality spaces (e.g. no two quality spaces can 
overlap mereologically).") 
) 
 Class(d:region partial  
  d:abstract 
  restriction(<d:q-location-of> allValuesFrom(d:quality)) 
  restriction(d:part allValuesFrom(d:region))) 
 Class(d:region partial  
  annotation(rdfs:comment "We distinguish between a quality (e.g., the color  of a specific rose), and its value (e.g., a 
particular shade of red). The latter  is called quale, and describes the position of an individual quality within a certain  
conceptual space (called here quality space) Gardenfors (2000). So when we say that  two roses have (exactly) the same 
color, we mean that their color qualities, which  are distinct, have the same position in the color space, that is they have the 
same  color quale.") 
) 
 Class(<d:relevant-part> partial  
  d:feature) 
 Class(<d:relevant-part> partial  
  annotation(rdfs:comment "Features that are relevant parts of their host, like a bump or an edge.") 
) 
 Class(d:set partial  
  d:abstract) 
 Class(d:set partial  
  annotation(rdfs:comment "A mathematical set.") 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 117 of 140 

) 
 Class(<d:social-object> partial  
  restriction(<d:generically-dependent-on> someValuesFrom(<d:agentive-physical-object>)) 
  restriction(<d:generically-dependent-on> someValuesFrom(<d:communication-event>)) 
  <d:non-physical-object>) 
 Class(<d:social-object> partial  
  annotation(rdfs:comment "A catch-all class for entities from the social world. It includes agentive and non-agentive 
socially-constructed objects: descriptions, concepts, figures, collections, information objects. 
It could be equivalent to 'non-physical object', but we leave open the possibility of 'private' non-physical objects.") 
) 
 Class(<d:space-region> partial  
  <d:physical-region> 
  restriction(<d:q-location-of> allValuesFrom(<d:spatial-location_q>)) 
  restriction(d:part allValuesFrom(<d:space-region>))) 
 Class(<d:space-region> partial  
  annotation(rdfs:comment "An ordinary space: geographical, cosmological, anatomical, topographic, etc.") 
) 
 Class(<d:spatial-location_q> partial  
  <d:physical-quality>) 
 Class(<d:spatial-location_q> partial  
  annotation(rdfs:comment "A physical quality, q-located in (whose value is given within) ordinary spaces (geographical 
coordinates, cosmological positions, anatomical axes, etc.).") 
) 
 Class(<d:spatio-temporal-region> partial  
  <d:space-region>) 
 Class(<d:spatio-temporal-region> partial  
  annotation(rdfs:comment "Any region resulting from the composition of a space region with a temporal region, i.e. being 
present in region r at time t.") 
) 
 Class(d:state partial  
  d:stative) 
 Class(d:state partial  
  annotation(rdfs:comment "Within stative occurrences, we distinguish between  states and processes according to 
homeomericity: sitting is classified as a state  but running is classified as a process, since there are (very short) temporal parts  
of a running that are not themselves runnings. 
 
In general, states differ from situations because they are not assumed to have a description from which they depend. They can 
be sequenced by some course, but they do not require a description as a unifying criterion. 
On the other hand, at any time, one can conceive a description that asserts the constraints by which a state of a certian type is 
such, and in this case, it becomes a situation. 
Since the decision of designing an explicit description that unifies a perdurant depends on context, task, interest, application, 
etc., when aligning an ontology do DLP, there can be indecision on where to align a state-oriented class.  
For example, in the WordNet alignment, we have decided to put only some physical states under 'state', e.g. 'turgor', in order 
to stress the social orientedness of DLP. But whereas we need to talk explicitly of the criteria by which we conceive turgor 
states, these will be put under 'situation'. 
Similar considerations are made for the other types of perdurants in DOLCE. 
 
A different notion of event (dealing with change) is currently investigated for further developments: being 'achievement', 
'accomplishment', 'state', 'event', etc. can be also considered 'aspects' of processes or of parts of them.  
For example, the same process 'rock erosion in the Sinni valley' can be conceptualized as an accomplishment (what has 
brought the current state that e.g. we are trying to explain), as an achievement (the erosion process as the result of a previous 
accomplishment), as a state (if we collapse the time interval of the erosion into a time point), or as an event (what has 
changed our focus from a state to another). 
In the erosion case, we could have good motivations to shift from one aspect to another: a) causation focus, b) effectual 
focus, c) condensation d) transition (causality). 
 
If we want to consider all the aspects of a process together, we need to postulate a unifying descriptive set of criteria (i.e. a 
'description'), according to which that process is circumstantiated in a 'situation'. The different aspects will arise as a parts of 
a same situation.") 
) 
 Class(d:stative partial  
  d:perdurant) 
 Class(d:stative partial  
  annotation(rdfs:comment "An occurrence-type is stative or eventive according  to whether it holds of the mereological sum 
of two of its instances, i.e. if it is  cumulative or not. A sitting occurrence is stative since the sum of two sittings  is still a 
sitting occurrence.") 
) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 118 of 140 

 Class(<d:temporal-location_q> partial  
  <d:temporal-quality>) 
 Class(<d:temporal-location_q> partial  
  annotation(rdfs:comment "A temporal location quality.") 
) 
 Class(<d:temporal-quality> partial  
  restriction(<d:q-location> allValuesFrom(<d:temporal-region>)) 
  restriction(<d:inherent-in> someValuesFrom(d:perdurant)) 
  restriction(<d:inherent-in> allValuesFrom(d:perdurant)) 
  d:quality 
  restriction(<d:has-quality> allValuesFrom(<d:temporal-quality>))) 
 Class(<d:temporal-quality> partial  
  annotation(rdfs:comment "A quality inherent in a perdurant.") 
) 
 Class(<d:temporal-region> partial  
  d:region 
  restriction(<d:q-location-of> allValuesFrom(<d:temporal-quality>)) 
  restriction(d:part allValuesFrom(<d:temporal-region>))) 
 Class(<d:temporal-region> partial  
  annotation(rdfs:comment "A region at which only temporal qualities can be  directly located. It assumes a metrics for 
time.") 
) 
 Class(<d:temporary-atom> complete  
  intersectionOf(d:endurant restriction(<d:temporary-proper-part> cardinality(0)))) 
 Class(<d:temporary-atom> partial  
  annotation(rdfs:comment "An endurant that is an atom at time t.") 
) 
 Class(<d:time-interval> partial  
  <d:temporal-region>) 
 Class(<d:time-interval> partial  
  annotation(rdfs:comment "A temporal region, measured according to a calendar.") 
) 
 Class(c:concept partial  
  <d:non-agentive-social-object> 
  restriction(<c:defined-by> someValuesFrom(c:description)) 
  restriction(<c:refined-by> allValuesFrom(c:concept))) 
 Class(c:concept partial  
  annotation(rdfs:comment "AKA C-Description.  
A non-physical object that is defined by a description s, and whose function is classifying entities from a ground ontology in 
order to build situations that can satisfy s.") 
) 
 Class(<c:constitutive-description> partial  
  c:description 
  restriction(c:defines someValuesFrom(c:figure))) 
 Class(<c:constitutive-description> partial  
  annotation(rdfs:comment "A description whose main purpose is defining a figure.") 
) 
 Class(c:course partial  
  restriction(d:part allValuesFrom(c:course)) 
  restriction(<c:defined-by> someValuesFrom(c:description)) 
  restriction(c:sequences allValuesFrom(d:perdurant)) 
  c:concept 
  restriction(<c:modal-target-of> allValuesFrom(unionOf(c:role c:figure)))) 
 Class(c:course partial  
  annotation(rdfs:comment "A concept that selects (in particular, it 'sequences') perdurants (processes, events, or states), as a 
component of some description.  
Courses are the descriptive counterpart of perdurants, and, as perdurants have endurants as participants, they are usually the 
function of some role.") 
) 
 Class(c:description partial  
  <d:non-agentive-social-object> 
  restriction(<c:expressed-by> someValuesFrom(<c:information-object>)) 
  restriction(<c:d-uses> someValuesFrom(unionOf(c:figure c:concept))) 
  restriction(c:defines allValuesFrom(unionOf(c:figure c:concept))) 
  restriction(<c:conceived-by> someValuesFrom(<d:agentive-physical-object>))) 
 Class(c:description partial  
  annotation(rdfs:comment "A description is a non-physical object, which represents a conceptualization (as a mental object 
or state), hence generically dependent on some agent, and which is also social, i.e. communicable. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 119 of 140 

Descriptions define or use concepts or figures, and can be satisfied by situations. 
The typology of descriptions is still preliminary.") 
) 
 Class(c:figure partial  
  <d:social-object> 
  restriction(<c:refined-by> allValuesFrom(c:figure)) 
  restriction(<c:defined-by> someValuesFrom(<c:constitutive-description>))) 
 Class(c:figure partial  
  annotation(rdfs:comment "a.k.a. 'social individual'. 
Figures are social objects defined or used by descriptions, but differently from concepts, they do not classify entities.  
Examples of figures are organisations, political geographic objects, sacred symbols, etc.") 
) 
 Class(c:gestalt partial  
  c:theory) 
 Class(c:gestalt partial  
  annotation(rdfs:comment "A perceptual structure, from the descriptive viewpoint. In other words, this encodes the 
conditions by which a configuration, structure, or arrangement is perceived by a cognitive agent.") 
) 
 Class(<c:information-object> complete  
  intersectionOf(<d:social-object> restriction(<c:interpreted-by> allValuesFrom(unionOf(<d:agentive-social-object> 
<d:agentive-physical-object>))) restriction(<c:realized-by> someValuesFrom(<c:physical-realization>)) restriction(c:about 
allValuesFrom(d:particular)) restriction(c:expresses allValuesFrom(c:description)))) 
 Class(<c:information-object> partial  
  restriction(<f:ordered-by> someValuesFrom(<f:information-encoding-system>)) 
  restriction(d:part allValuesFrom(<c:information-object>))) 
 Class(<c:information-object> partial  
  annotation(rdfs:comment "Information objects are social objects. They are realized by some entity. They are ordered 
(expressed according to) by some system for information encoding. Consequently, they are dependent from an encoding as 
well as from a concrete realization. 
They can express a description (the ontological equivalent of a meaning/conceptualization), can be about any entity, and can 
be interpreted by an agent. 
From a communication perspective, an information object can play the role of \"message\". From a semiotic perspective, it 
playes the role of \"expression\".") 
) 
 Class(c:method partial  
  c:description) 
 Class(c:method partial  
  annotation(rdfs:comment "A description that contains a specification to do, realize, behave, etc. Subclasses are plan, 
technique, practice, project, etc.") 
) 
 Class(<c:modal-description> partial  
  restriction(<d:temporary-part-of> someValuesFrom(c:description)) 
  restriction(<c:d-uses> someValuesFrom(c:course)) 
  restriction(<c:d-uses> someValuesFrom(intersectionOf(c:role restriction(<c:attitude-towards> 
someValuesFrom(c:course))))) 
  c:description) 
 Class(<c:modal-description> partial  
  annotation(rdfs:comment "A modal description is any part of a description that has a unity criterion consisting in the 
specification of a modal target (some course), and it can be a right, power, duty, etc. 
Notice that modal descriptions can appear in conventionalized descriptions as well as in idiosyncratic assessements, 
narratives, promises, etc.") 
) 
 Class(c:parameter partial  
  restriction(<c:valued-by> allValuesFrom(d:region)) 
  restriction(<c:valued-by> someValuesFrom(d:region)) 
  restriction(<c:requisite-for> allValuesFrom(unionOf(c:role c:course c:figure))) 
  restriction(<c:defined-by> someValuesFrom(c:description)) 
  c:concept) 
 Class(c:parameter partial  
  annotation(rdfs:comment "A concept that classifies (in particular, it is 'valued by') regions, as defined by some description.  
Parameters are the descriptive counterpart of regions, and, as regions represent the qualities of perdurants or endurants, they 
can be requisites for some role or course. 
A parameter has at least one region that is a value for it.") 
) 
 Class(<c:physical-realization> complete  
  intersectionOf(unionOf(intersectionOf(c:situation restriction(<c:setting-for> someValuesFrom(unionOf(<d:physical-
region> <d:physical-endurant> <d:physical-quality> restriction(d:participant someValuesFrom(<d:physical-endurant>)))))) 
<d:physical-region> <d:physical-endurant> <d:physical-quality> intersectionOf(restriction(d:participant 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 120 of 140 

someValuesFrom(<d:physical-endurant>)) d:perdurant)) d:particular restriction(c:realizes someValuesFrom(<d:non-
physical-object>)))) 
 Class(<c:physical-realization> partial  
  annotation(rdfs:comment "Any physical particular that realizes a non-physical endurant. Such physical particulars can be 
either physical endurants, physical qualities, physical regions, perdurants with at least one physical participant, or a situation 
with one physical entity in its setting. 
Ultimately, a physical realization depends on at least one physical endurant (each of the others physical entity types depend 
on a physical endurant to be considered as such).") 
) 
 Class(c:plan partial  
  restriction(<c:d-uses> someValuesFrom(intersectionOf(c:role restriction(<c:played-by> 
allValuesFrom(unionOf(<d:agentive-social-object> <d:agentive-physical-object>)))))) 
  c:method 
  restriction(<d:proper-part> someValuesFrom(e:goal)) 
  restriction(<c:d-uses> someValuesFrom(c:task))) 
 Class(c:plan partial  
  annotation(rdfs:comment "A plan is a method for executing or  performing a procedure or a stage of a procedure. 
A plan must use both at least one role played by an agent, and at least one task. 
Finally, a plan has a goal as proper part, and can also have regulations and other descriptions as proper parts.") 
) 
 Class(c:practice partial  
  restriction(<c:conceived-by> someValuesFrom(<d:agentive-social-object>)) 
  c:method) 
 Class(c:practice partial  
  annotation(rdfs:comment "A social method carried out explicitly or by tradition, spontaneously emerged, or moderately or 
strongly regulated.") 
) 
 Class(c:project partial  
  c:method) 
 Class(c:project partial  
  annotation(rdfs:comment "A project is a proactively satisfied method. Differently from a plan, a project includes at least one 
'product' role to be played by some endurant (e.g. a house), or one 'result' role played by a perdurant with a definite 
participant (e.g. a restored state of a house).") 
) 
 Class(c:regulation partial  
  <c:social-description>) 
 Class(c:regulation partial  
  annotation(rdfs:comment "A description usually requiring a C-SAT satisfaction for a situation. Norms, codes of practice, 
etc. are examples.") 
) 
 Class(c:relation partial  
  c:theory) 
 Class(c:relation partial  
  annotation(rdfs:comment "A non-social relation(ship): formal, linguistic, etc. It is considered here a theory, because 
relations are established in order to give an ordering to some reality.") 
) 
 Class(c:role partial  
  restriction(c:requisite allValuesFrom(c:parameter)) 
  restriction(<c:modal-target> allValuesFrom(c:course)) 
  restriction(<c:defined-by> someValuesFrom(c:description)) 
  restriction(<c:played-by> allValuesFrom(d:endurant)) 
  c:concept) 
 Class(c:role partial  
  annotation(rdfs:comment "Also known as 'functional role'. 
A concept that classifies (in particular, it is  'played by') endurants, as used in some description.  Roles are the descriptive 
counterpart of endurants, and, as endurants participate in perdurants, they usually have courses as modal targets (see). 
The typology of roles is still preliminary.") 
) 
 Class(c:situation complete  
  intersectionOf(<d:non-agentive-social-object> restriction(<c:setting-for> 
someValuesFrom(intersectionOf(complementOf(c:situation) d:particular))) restriction(c:satisfies 
someValuesFrom(c:description)))) 
 Class(c:situation partial  
  restriction(d:part allValuesFrom(c:situation))) 
 Class(c:situation partial  
  annotation(rdfs:comment "A situation is a social object that appears in the domain of an ontology only because there is a 
description whose components can ?carve up? a view (setting) on that domain. A situation has to satisfy a description (see 
below for ways of defining the satisfies relation), and it has to be setting for at least one entity. 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 121 of 140 

In other words, it is the ontological counterpart (with due local differences or restrictions) of settings (situations from SC, 
contexts, episodes, states of affairs, structures, configurations, cases, etc.). 
A perdurant is usually the only mandatory constituent of a setting. 
Two descriptions of a same situation are possible, otherwise we would result in a solipsistic ontology.  
The time and space (and possibly other qualities) of a situation are the time and space of the perdurants in the setting.") 
) 
 Class(<c:social-description> complete  
  intersectionOf(restriction(<d:generically-dependent-on> someValuesFrom(l:collective)) c:description)) 
 Class(<c:social-description> partial  
  annotation(rdfs:comment "Examples of Social Descriptions are laws,  norms, shares, peace treaties, etc., which are 
generically dependent on societies. 
Social descriptions are dependent on a community of agents.") 
) 
 Class(<c:social-relationship> partial  
  restriction(<c:d-uses> someValuesFrom(intersectionOf(c:role restriction(<c:played-by> 
allValuesFrom(unionOf(<d:agentive-social-object> <k:cognitive-agentive-physical-object>)))))) 
  <c:social-description>) 
 Class(<c:social-relationship> partial  
  annotation(rdfs:comment "A social description defining roles for the interaction of cognitive agents.") 
) 
 Class(<c:social-role> partial  
  c:role) 
 Class(<c:social-role> partial  
  annotation(rdfs:comment "A role created and maintained by a society.") 
) 
 Class(<c:symmetric-role> partial  
  c:role) 
 Class(<c:symmetric-role> partial  
  annotation(rdfs:comment "A role played by each of two entities at the same time and with the same parameters: e.g. 
equivalent, neighbor, father.") 
) 
 Class(c:task complete  
  intersectionOf(restriction(<h:desire-target-of> someValuesFrom(unionOf(<k:agent-driven-role> <i:agentive-figure>))) 
c:course restriction(<c:defined-by> someValuesFrom(c:method)))) 
 Class(c:task partial  
  annotation(rdfs:comment "A course used to sequence activities or other controllable perdurants (some states, processes), 
usually within methods.  
They must be defined by a method, but can be *used* by other kinds of descriptions. 
They are desire targets of some role played by an agent. 
 
Tasks can be complex, and ordered according to an abstract succession relation. Tasks can relate to ground activities or 
decision making; the last kind deals with typical flowchart content. A task is different both from a flowchart node, and from 
an action or action type. 
 
Tasks can be considered shortcuts for plans, since at least one role played by an agent has a desire attitude towards them 
(possibly different from the one that puts the task into action). In principle, tasks could be transformed into explicit plans.") 
) 
 Class(c:technique partial  
  c:method) 
 Class(c:technique partial  
  annotation(rdfs:comment "A technique is a practical method to obtain some modification in the environment (or evaluation 
of an environment) that fulfils some task.") 
) 
 Class(c:theory partial  
  c:description) 
 Class(c:theory partial  
  annotation(rdfs:comment "This is used in a wide cultural sense: a theory about something, expressed in a rather systematic 
way, but not necessarily public (although communicable in principle). An axiomatic theory is not a theory in this sense, 
although we can expect an axiomatic theory to be the formal representation of a generic theory.") 
) 
 Class(<f:classification-system> partial  
  <f:information-encoding-system> 
  restriction(c:involves someValuesFrom(<c:information-object>))) 
 Class(<f:classification-system> partial  
  annotation(rdfs:comment "An information encoding system that provides rules for (ev.  ordered) lists of information objects, 
e.g terminologies, subjects, knowledge domains.") 
) 
 Class(<f:combinatorial-system> partial  



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 122 of 140 

  <f:information-encoding-system> 
  restriction(f:orders allValuesFrom(<c:information-object>))) 
 Class(<f:combinatorial-system> partial  
  annotation(rdfs:comment "An information encoding system that provides roles and operations to create valid information 
objects (e.g. grammars, templates, codes).") 
) 
 Class(<f:diagrammatic-object> partial  
  <c:information-object>) 
 Class(<f:diagrammatic-object> partial  
  annotation(rdfs:comment "An information object ordered by a shematic iconic code") 
) 
 Class(<f:formal-expression> partial  
  <c:information-object> 
  restriction(<f:ordered-by> someValuesFrom(<f:formal-system>))) 
 Class(<f:formal-system> partial  
  <f:information-encoding-system> 
  restriction(f:orders allValuesFrom(<f:formal-expression>))) 
 Class(<f:formal-system> partial  
  annotation(rdfs:comment "A code that orders the generation of information objects according to formally defined 
vocabulary, axioms, rules, etc.") 
) 
 Class(f:grammar partial  
  <f:combinatorial-system>) 
 Class(f:grammar partial  
  annotation(rdfs:comment "A set of rules for the generation of a (closed or open set of) information objects.") 
) 
 Class(<f:iconic-object> partial  
  <c:information-object>) 
 Class(<f:iconic-object> partial  
  annotation(rdfs:comment "An information object ordered by a visual code.") 
) 
 Class(<f:information-collection> partial  
  <j:non-physical-collection> 
  restriction(j:member allValuesFrom(f:text)) 
  restriction(j:member someValuesFrom(f:text)) 
  restriction(j:member minCardinality(2))) 
 Class(<f:information-collection> partial  
  annotation(rdfs:comment "A collection of texts.") 
) 
 Class(<f:information-encoding-system> partial  
  c:description 
  restriction(c:involves someValuesFrom(<c:information-object>))) 
 Class(<f:information-encoding-system> partial  
  annotation(rdfs:comment "An information encoding system is a description that involves information objects. They can be 
divided into 1) axiomatic systems, which provide roles and operations to define formal descriptions (e.g. theories), 2) 
combinatorial systems, which provide roles and operations to create valid information objects (e.g. grammars),  3) 
classification systems, which are contexts of (ev.  ordered) lists of information objects, and 4) informal encoding systems, 
which provide roles  and operations to define informal descriptions (e.g.  narratives).") 
) 
 Class(<f:information-realization> complete  
  intersectionOf(<c:physical-realization> restriction(c:realizes someValuesFrom(<c:information-object>)))) 
 Class(<f:information-realization> partial  
  annotation(rdfs:comment "Any physical entity that realizes an information object.") 
) 
 Class(<f:linguistic-object> partial  
  <c:information-object> 
  restriction(<f:ordered-by> someValuesFrom(g:language))) 
 Class(<f:linguistic-object> partial  
  annotation(rdfs:comment "An information object ordered by (encoded according to) a language.") 
) 
 Class(f:morpheme partial  
  <f:linguistic-object> 
  restriction(<d:part-of> someValuesFrom(f:word))) 
 Class(f:morpheme partial  
  annotation(rdfs:comment "A part of a word that can express a meaning.") 
) 
 Class(f:narrative partial  
  restriction(<c:expressed-by> someValuesFrom(f:text)) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 123 of 140 

  c:description) 
 Class(f:narrative partial  
  annotation(rdfs:comment "A description expressed by a text, and ordered by additional semiotic codes (narratological 
structures).") 
) 
 Class(f:phoneme partial  
  restriction(<d:part-of> someValuesFrom(f:word)) 
  <f:linguistic-object>) 
 Class(f:phoneme partial  
  annotation(rdfs:comment "A part of a word that is assumed to be sensible to speakers when physically realized by voice. 
A phoneme is not necessarily able to express a meaning (description), although it can in principle (e.g. 'a' in English).") 
) 
 Class(f:text partial  
  <f:linguistic-object> 
  restriction(<f:ordered-by> someValuesFrom(g:language))) 
 Class(f:text partial  
  annotation(rdfs:comment "A complex linguistic object,  expressed according to a language and still independent from  a 
particular physical support.") 
) 
 Class(<f:text-repository> partial  
  restriction(j:member someValuesFrom(f:text)) 
  <f:information-collection> 
  restriction(j:member minCardinality(2)) 
  restriction(j:member allValuesFrom(f:text))) 
 Class(<f:text-repository> partial  
  annotation(rdfs:comment "A collection having only texts as members.") 
) 
 Class(f:word partial  
  <f:linguistic-object>) 
 Class(f:word partial  
  annotation(rdfs:comment "A linguistic object consisting of a string (independently of its physical realization). Its 
topological unity can change according to its physical realization: as a written realization, its boundaries are blank spaces, as 
a spoken realization, sometimes is silence, sometimes not, and higher order features intervene.") 
) 
 Class(<h:cognitive-modal-description> partial  
  <c:modal-description>) 
 Class(<h:cognitive-modal-description> partial  
  annotation(rdfs:comment "The modal descriptions depending on some mental attitude, represented here by means of a 
relation between roles and tasks.") 
) 
 Class(h:commitment partial  
  <h:cognitive-modal-description>) 
 Class(h:commitment partial  
  annotation(rdfs:comment "A commitment is a cognitive modal description, characterized by certain obligations and rights 
targeted by at least one of its roles.") 
) 
 Class(h:desire partial  
  <h:cognitive-modal-description> 
  restriction(<c:conceived-by> someValuesFrom(unionOf(<d:agentive-social-object> <k:cognitive-agentive-physical-
object>)))) 
 Class(h:desire partial  
  annotation(rdfs:comment "Desires in general are characterised by defining or using at least one intentional agentive role or 
figure, and at least one course towards which the role or figure has a desire. 
The coreference between the two axioms cannot be represented in OWL-DL.") 
) 
 Class(h:promise partial  
  h:commitment) 
 Class(h:promise partial  
  annotation(rdfs:comment "A commitment in which an obligation to some future result is expressed.") 
) 
 Class(h:responsibility partial  
  h:commitment 
  restriction(<c:d-uses> someValuesFrom(c:task)) 
  restriction(<c:d-uses> someValuesFrom(k:status))) 
 Class(h:responsibility partial  
  annotation(rdfs:comment "Responsibility is preliminarily described here as a commitment that includes a status, which has 
some rights and duties towards some task (see related axioms).") 
) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 124 of 140 

 Class(<e:abstract-plan> partial  
  c:plan) 
 Class(<e:abstract-plan> partial  
  annotation(rdfs:comment "An abstract plan is a plan whose roles and tasks only specify classes of entities that can be 
included in a plan execution. In other words, a component from an abstract plan does not select any named entity.  
This condition cannot be formalized in FOL, since we would like to express a condition by which an instance of an abstract 
plan specifies instances of plan components, but no instances of situation elements, e.g. that 'manager' selects some (if any) 
instance of person, but not a specified (named) person.") 
) 
 Class(<e:action-task> complete  
  intersectionOf(restriction(c:sequences allValuesFrom(complementOf(<e:planning-activity>))) <e:elementary-task>)) 
 Class(<e:action-task> partial  
  annotation(rdfs:comment "An action task is an elementary task that sequences non-planning activities, like: moving, 
exercising forces, gathering information, etc. Planning activites are mental events involving some rational event.") 
) 
 Class(<e:bag-task> partial  
  <e:complex-task> 
  restriction(c:component allValuesFrom(complementOf(<e:control-task>)))) 
 Class(<e:bag-task> partial  
  annotation(rdfs:comment "A bag task is a complex task that does not include either a control task, or a successor relation 
among any two component tasks. 
The last condition cannot be stated in OWL-DL, because it needs a coreference.") 
) 
 Class(<e:circumstantial-plan> complete  
  intersectionOf(restriction(<c:d-uses> allValuesFrom(intersectionOf(restriction(c:classifies someValuesFrom(d:particular)) 
c:concept))) c:plan)) 
 Class(<e:circumstantial-plan> partial  
  annotation(rdfs:comment "A circumstantial plan has all components selecting named individuals from the ground ontology 
(e.g. only specific persons, specified resources, a finite number of time intervals and space regions, etc.). 
 
This condition cannot be formalized in FOL, since we would like to express a condition by which an instance of an 
circumstantial plan specifies both instances of plan components, and instances of situation elements, e.g. that 'manager' 
selects a specified (named) person.") 
) 
 Class(<e:complex-task> complete  
  intersectionOf(restriction(c:component minCardinality(2)) restriction(c:component allValuesFrom(c:task)) 
restriction(c:component someValuesFrom(c:task)) c:task)) 
 Class(<e:complex-task> partial  
  annotation(rdfs:comment "A task that has at least two other tasks as components.") 
) 
 Class(<e:control-task> complete  
  intersectionOf(<e:elementary-task> restriction(c:sequences allValuesFrom(unionOf(<e:planning-activity> <e:decision-
state>))))) 
 Class(<e:control-task> partial  
  annotation(rdfs:comment "A control task is an elementary task that sequences a planning activity, e.g. an activity aimed at 
(cognitively or via simulation) anticipating other activities. Therefore, control tasks have usually at least one direct successor 
task (the controlled one), with the exception of ending tasks. 
 
The reification of control constructs allows to represent procedural knowledge into the same ontology including controlled 
action. Besides cognitive transparency and independency from a particular grounding system, a further advantage is enable 
the representation of coordination tasks. For example, a manager that coordinates the execution of several related activities 
can be represented as a role with a responsibility (duty+right) towards some complex task.") 
) 
 Class(<e:decision-activity> partial  
  <e:planning-activity> 
  restriction(<c:sequenced-by> someValuesFrom(oneOf(<e:case-task>)))) 
 Class(<e:decision-activity> partial  
  annotation(rdfs:comment "An activity related to planning. It is sequenced by 'case task', and can contain an information 
gathering activity.") 
) 
 Class(<e:decision-state> complete  
  intersectionOf(d:state restriction(b:follows someValuesFrom(<e:decision-activity>)) restriction(<c:sequenced-by> 
someValuesFrom(oneOf(<e:deliberation-task>))))) 
 Class(<e:decision-state> partial  
  annotation(rdfs:comment "A state related to planning. It is sequenced by 'deliberation task', and is preceded by a decision 
activity.") 
) 
 Class(<e:elementary-task> complete  



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 125 of 140 

  intersectionOf(restriction(c:component allValuesFrom(complementOf(c:task))) c:task)) 
 Class(<e:elementary-task> partial  
  annotation(rdfs:comment "An atomic task.") 
) 
 Class(e:goal complete  
  intersectionOf(restriction(<d:proper-part-of> someValuesFrom(c:plan)) h:desire)) 
 Class(e:goal partial  
  annotation(rdfs:comment "We are proposing here a restrictive notion of goal that relies upon its desirability by some agent, 
which does not necessarily play a role in the execution of the plan the goal is a part of. For example, an agent can have an 
attitude towards some task defined in a plan, e.g. duty towards, which is different from desiring it (desire towards). We might 
say that a goal is usually desired by the creator or beneficiary of a plan. The minimal constraint for a goal is that it is a proper 
part of a plan. 
For example, a desire to start a relationship can become a goal if someone takes action (or lets someone else take it for her 
sake) to obtain it.") 
) 
 Class(<e:goal-qua-main> complete  
  intersectionOf(e:goal restriction(<e:main-goal-of> someValuesFrom(c:plan)))) 
 Class(<e:goal-qua-main> partial  
  annotation(rdfs:comment "A main goal can be defined as a goal that is part of a plan but not of one of its subplans.  
The characteristic axiom cannot be formalized in OWL-DL (it requires coreference).") 
) 
 Class(<e:goal-situation> complete  
  intersectionOf(c:situation restriction(c:satisfies someValuesFrom(e:goal)))) 
 Class(<e:goal-situation> partial  
  annotation(rdfs:comment "A goal situation is a situation that satisfies a goal. 
 
Opposite to the case of subplan executions, a goal situation is not part of a plan execution. 
 
In other words, it is not true in general that any situation satisfying a part of a description, is also part of the situation that 
satisfies the whole description. 
 
This helps to account for the following cases: 
 
? Execution of plans containing abort or suspension conditions (the plan would be satisfied even if the goal has not been 
reached, see below) 
? Incidental satisfaction, like when a situation satisfies a goal without being intentionally planned (but anyway desired).") 
) 
 Class(<e:hybrid-task> complete  
  intersectionOf(<e:complex-task> restriction(c:component someValuesFrom(<e:control-task>)) restriction(c:component 
someValuesFrom(<e:action-task>)))) 
 Class(<e:hybrid-task> partial  
  annotation(rdfs:comment "A complex task that has at least one control task (and then, at least one action task as well) as 
component.") 
) 
 Class(<e:information-gathering> partial  
  k:activity) 
 Class(<e:information-gathering> partial  
  annotation(rdfs:comment "An activity aimed at gathering information for some purpose. It is typically sequenced by case 
tasks for taking decisions (can be part of decision activities).") 
) 
 Class(<e:maximal-task> partial  
  <e:complex-task>) 
 Class(<e:maximal-task> partial  
  annotation(rdfs:comment "A maximal task is a complex task that has all the tasks defined in a plan as components. 
 
In OWL-DL the axiom is defined as a concept axiom over plan component  task.") 
) 
 Class(<e:plan-assessment> partial  
  restriction(<c:has-in-scope> allValuesFrom(<e:plan-execution>)) 
  c:technique) 
 Class(<e:plan-assessment> partial  
  annotation(rdfs:comment "A technique to evaluate a plan execution.") 
) 
 Class(<e:plan-assessment-task> complete  
  intersectionOf(restriction(<c:defined-by> someValuesFrom(<e:plan-assessment>)) <e:control-task>)) 
 Class(<e:plan-assessment-task> partial  
  annotation(rdfs:comment "A task defined in a plan assessment.") 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 126 of 140 

) 
 Class(<e:plan-execution> complete  
  intersectionOf(c:situation restriction(<c:p-sat> someValuesFrom(c:plan)))) 
 Class(<e:plan-execution> partial  
  annotation(rdfs:comment "Plan executions are situations that proactively satisfy a plan (cf. definition of P-SAT above). 
Subplan executions are proper parts of the whole plan execution.") 
) 
 Class(<e:planning-activity> partial  
  restriction(m:product allValuesFrom(c:plan)) 
  k:activity) 
 Class(<e:planning-activity> partial  
  annotation(rdfs:comment "The activity to generate a plan.") 
) 
 Class(<e:saturated-plan> complete  
  intersectionOf(restriction(<c:d-uses> someValuesFrom(intersectionOf(restriction(<c:valued-by> 
someValuesFrom(<d:space-region>)) c:parameter))) c:plan restriction(<c:d-uses> 
someValuesFrom(intersectionOf(restriction(<c:valued-by> someValuesFrom(<d:time-interval>)) c:parameter))))) 
 Class(<e:saturated-plan> partial  
  annotation(rdfs:comment "A saturated plan is a plan that cannot be executed twice, since it defines spatio-temporal 
parameters restricted to one value, e.g. one of its tasks selects an event that is valued by a definite temporal value in a definite 
space region. 
 
Of course, in the case of maximal spatio-temporal regions, a saturated plan tends to approximate an abstract plan from the 
execution viewpoint, but these worst cases are unavoidable when dealing with maximality.") 
) 
 Class(e:schedule complete  
  intersectionOf(restriction(c:requisite someValuesFrom(intersectionOf(restriction(<c:valued-by> someValuesFrom(<d:time-
interval>)) c:parameter))) c:task)) 
 Class(e:schedule partial  
  annotation(rdfs:comment "A scheduling is a task that cannot be executed twice, since it has a temporal parameter restricted 
to one value, e.g. it selects an event that is valued by a definite temporal value.") 
) 
 Class(<e:sequential-task> partial  
  restriction(c:component minCardinality(2)) 
  <e:complex-task> 
  restriction(c:component allValuesFrom(complementOf(<e:control-task>))) 
  restriction(c:component someValuesFrom(<e:action-task>))) 
 Class(<e:sequential-task> partial  
  annotation(rdfs:comment "A sequential task is a complex task that includes a successor relation among any two component 
tasks, and does not contain any control task. 
 
The first condition cannot be stated in OWL-DL, because it needs coreference.") 
) 
 Class(e:subplan complete  
  intersectionOf(restriction(<d:proper-part-of> someValuesFrom(c:plan)) c:plan)) 
 Class(e:subplan partial  
  annotation(rdfs:comment "A proper part of a plan.") 
) 
 Class(<g:communication-role> partial  
  restriction(<c:d-used-by> someValuesFrom(oneOf(<g:s-communication-theory>))) 
  c:role) 
 Class(<g:communication-role> partial  
  annotation(rdfs:comment "The roles employed to characterize communication. E.g. the roles from Jakobson's theory of 
communication.") 
) 
 Class(<g:communication-situation> complete  
  intersectionOf(c:situation restriction(c:satisfies someValuesFrom(oneOf(<g:s-communication-theory>))))) 
 Class(<g:communication-situation> partial  
  annotation(rdfs:comment "Any situation that satisfies Jakobson's communication theory.") 
) 
 Class(<g:interpretation-situation> complete  
  intersectionOf(c:situation restriction(c:satisfies someValuesFrom(oneOf(<g:semiotic-interpretation-function>))))) 
 Class(<g:interpretation-situation> partial  
  annotation(rdfs:comment "The class of situations that satisfy the semiotic interpretation function (given an expression and a 
context, a meaning is provided).") 
) 
 Class(g:language partial  
  <g:semiotic-code>) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 127 of 140 

 Class(<g:semiotic-code> partial  
  <f:combinatorial-system>) 
 Class(<g:semiotic-code> partial  
  annotation(rdfs:comment "A combinatorial code intended to ordering of information objects involved in the semiotic 
'interpretation function'.") 
) 
 Class(<g:semiotic-role> partial  
  c:role 
  restriction(<c:specialized-by> someValuesFrom(<g:communication-role>))) 
 Class(<g:semiotic-role> partial  
  annotation(rdfs:comment "A semiotic role is a non-agentive role defined by the interpretation function. 
It should be specialized within a communication setting by a role that is played by some entity in a communication situation.  
Semiotic roles are used to fill the universe of the so-called 'interpretation function'. 
Two of them are specialized by two communication roles (message and context).") 
) 
 Class(<i:agentive-figure> complete  
  intersectionOf(<d:agentive-social-object> restriction(c:conceives someValuesFrom(c:description)) restriction(<c:acted-by> 
allValuesFrom(unionOf(<d:agentive-social-object> <d:agentive-physical-object>))) restriction(c:plays 
someValuesFrom(c:role)) c:figure restriction(c:deputes allValuesFrom(c:role)))) 
 Class(<i:agentive-figure> partial  
  annotation(rdfs:comment "Agentive figures are those which are assigned (agentive) roles from a society or community; 
hence, they can act like a physical agent. 
 
Typical agentive figures are societies, organizations, and in general all socially constructed persons. 
Figures are not dependent on roles defined or used in the same descriptions they are defined or used, but they can act because 
they depute some powers to some of those roles. In other words, a figure selected by some agentive role can play that role 
because there are other roles in the descriptions that define or use the figure. Those roles select endurants that result to act for 
the figure. 
 
For example, an employee acts for an organization that deputes the role (e.g. turner) that classifies the employee. Simply put, 
a guy working as a turner at FIAT acts for (or on behalf of) FIAT. 
In complex figures, like organizations or societies, a total agency is possible when an endurant plays a delegate, or 
representative role of the figure.   
Since figures are social objects, it is conceivable to find figures that act for other figures.") 
) 
 Class(i:institution partial  
  i:organization) 
 Class(i:institution partial  
  annotation(rdfs:comment "An organization bearing a legal status and having powers conferred by Law.") 
) 
 Class(i:organization partial  
  <i:socially-constructed-person>) 
 Class(i:organization partial  
  annotation(rdfs:comment "A socially-constructed person with a complex articulation of tasks, roles and figures.") 
) 
 Class(<i:social-individual> complete  
  intersectionOf(restriction(<c:acted-by> someValuesFrom(unionOf(<d:natural-person> l:collective))) <i:agentive-figure>)) 
 Class(<i:social-individual> partial  
  annotation(rdfs:comment "a.k.a. social agent. 
a.k.a. social figure. 
An agentive figure created and maintained by a society (a collective).") 
) 
 Class(<i:social-unit> partial  
  <i:social-individual>) 
 Class(<i:social-unit> partial  
  annotation(rdfs:comment "A social individual that promotes a collective to a definite social recognition. 
It is usually acted by a collective, but there can be exceptions (e.g. mononuclear families).") 
) 
 Class(<i:socially-constructed-person> partial  
  <i:social-individual>) 
 Class(<i:socially-constructed-person> partial  
  annotation(rdfs:comment "A definite social figure that is constructed and acted by other previously existing persons 
(socially constructed or naturally born). A person in general is not characterized in this ontology.  
In a legal extension, it could be reasonable to create a class of legal persons, defined by legal constitutive descriptions, which 
includes the legal figures related to both natural and socially-constructed persons.") 
) 
 Class(<o:design-object-materialization> complete  



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 128 of 140 

  intersectionOf(<o:system-as-situation> restriction(<d:generically-dependent-on> someValuesFrom(<o:production-
workflow-execution>)) restriction(c:satisfies someValuesFrom(<o:system-design>)))) 
 Class(<o:design-object-materialization> partial  
  annotation(rdfs:comment "A situation in which an object exists that has been produced according to a system design 
specification.") 
) 
 Class(<o:production-workflow-execution> complete  
  intersectionOf(<o:system-as-situation> restriction(c:satisfies someValuesFrom(<o:system-production-workflow>)))) 
 Class(<o:production-workflow-execution> partial  
  annotation(rdfs:comment "A situation satisfying the production workflow of a system.") 
) 
 Class(<o:system-as-artifact> complete  
  intersectionOf(restriction(<d:proper-part> someValuesFrom(intersectionOf(restriction(<j:member-of> 
someValuesFrom(intersectionOf(j:collection restriction(<j:unified-by> someValuesFrom(unionOf(c:project c:plan)))))) 
<d:physical-object>))) <a:material-artifact> restriction(<d:proper-part> allValuesFrom(intersectionOf(restriction(<j:member-
of> someValuesFrom(intersectionOf(restriction(<j:unified-by> someValuesFrom(unionOf(c:project c:plan))) j:collection))) 
<d:physical-object>))))) 
 Class(<o:system-as-artifact> partial  
  annotation(rdfs:comment "A material artifact whose proper parts ('components') are physical objects, members of a 
collection unified by a project or plan.") 
) 
 Class(<o:system-as-description> partial  
  c:description 
  restriction(<c:satisfied-by> allValuesFrom(<o:system-as-situation>))) 
 Class(<o:system-as-description> partial  
  annotation(rdfs:comment "The descriptive, unifying aspect of a system (usually it includes at least a design, or project, plan, 
etc.).") 
) 
 Class(<o:system-as-situation> complete  
  intersectionOf(c:situation restriction(c:satisfies someValuesFrom(<o:system-as-description>)))) 
 Class(<o:system-as-situation> partial  
  annotation(rdfs:comment "The realization aspect of a system, satisfying the descriptive aspect. 
If the descriptive part only includes a design, it can be a situation in which that design has been realized (e.g. consisting 
essentially of a system-as-artifact as a design object). 
If the descriptive part includes a project, it can be a workflow situation resulting in the production of e.g. a system-as-artifact. 
If the descriptive part includes a set of instructions, it can be a situation in which e.g. a system-as-artifact interacts with the 
environment effectively (according to some evaluation criteria).") 
) 
 Class(<o:system-design> partial  
  <o:system-as-description>) 
 Class(<o:system-design> partial  
  annotation(rdfs:comment "The description of a system from the design viewpoint (how it is structured, but also including 
possible aesthetic or functional descriptions).") 
) 
 Class(<o:system-functionality> partial  
  <o:system-as-description>) 
 Class(<o:system-functionality> partial  
  annotation(rdfs:comment "The description of a system from the functional viewpoint (how it works).") 
) 
 Class(<o:system-production-workflow> complete  
  intersectionOf(restriction(<d:specifically-constantly-dependent-on> someValuesFrom(<o:system-functionality>)) 
<o:system-as-description> restriction(<d:specifically-constantly-dependent-on> someValuesFrom(<o:system-design>)))) 
 Class(<o:system-production-workflow> partial  
  annotation(rdfs:comment "The description of how a system is produced.") 
) 
 Class(<o:working-system-situation> complete  
  intersectionOf(<o:system-as-situation> restriction(<d:generically-dependent-on> someValuesFrom(<o:design-object-
materialization>)) restriction(c:satisfies someValuesFrom(<o:system-functionality>)))) 
 Class(<o:working-system-situation> partial  
  annotation(rdfs:comment "The situation in which a working system interacts with its environment according to its 
functionality description.") 
) 
 Class(owl:Thing partial) 
 
 AnnotationProperty(rdfs:comment) 
 AnnotationProperty(owl:versionInfo) 
 
 Individual(<e:abandonment-task> 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 129 of 140 

  annotation(rdfs:comment "A specialization of ending-task, aimed at sequencing events that end a plan execution without 
having reached its main-goal, and with no intention to resurrect the plan.") 
 
  type(<e:control-task>) 
  value(c:specializes <e:ending-task>)) 
 Individual(<e:abortion-task> 
  annotation(rdfs:comment "A specialization of ending-task, aimed at sequencing events that end a plan execution without 
having reached its main-goal, but with the possibility or resurrecting the plan.") 
 
  type(<e:control-task>) 
  value(c:specializes <e:ending-task>)) 
 Individual(<e:acceptation-task> 
  annotation(rdfs:comment "The task sequencing a positive decision to adopt a plan for execution.") 
 
  type(owl:Thing) 
  type(restriction(d:predecessor someValuesFrom(oneOf(<e:consideredness-task>)))) 
  type(<e:plan-assessment-task>) 
  value(c:specializes <e:deliberation-task>)) 
 Individual(<e:activation-task> 
  annotation(rdfs:comment "A control task aimed at starting an activity. It is specialized either by a beginning task or a 
reactivation task.") 
 
  type(restriction(<d:direct-predecessor> someValuesFrom(oneOf(<e:readiness-task>)))) 
  type(<e:control-task>) 
  type(restriction(<d:direct-predecessor> allValuesFrom(complementOf(<e:action-task>)))) 
  value(<c:specialized-by> <e:reactivation-task>) 
  value(<c:specialized-by> <e:beginning-task>)) 
 Individual(<e:alternate-task> 
  annotation(rdfs:comment "A case task branched to exactly 2 tasks, not executable in  parallel.") 
 
  type(restriction(<d:direct-successor> cardinality(2))) 
  type(<e:control-task>) 
  value(c:specializes <e:case-task>) 
  value(<d:direct-successor> <e:deliberation-task>)) 
 Individual(<e:any-order-task> 
  annotation(rdfs:comment "An any order task is a branching task that defines no order in the successor tasks. It?s another 
way of defining a bag task, because any temporal relation can be expected between any two perdurants sequenced by the 
tasks that are direct successor to the any order task.") 
 
  type(owl:Thing) 
  type(restriction(<d:direct-successor> someValuesFrom(intersectionOf(restriction(c:sequences 
allValuesFrom(intersectionOf(restriction(<b:temporal-relation> someValuesFrom(intersectionOf(restriction(<c:sequenced-
by> someValuesFrom(c:task)) d:perdurant))) d:perdurant))) c:task)))) 
  type(<e:control-task>) 
  value(c:specializes <e:branching-task>) 
  value(d:successor <e:synchro-task>)) 
 Individual(<e:beginning-task> 
  annotation(rdfs:comment "A beginning task is a control task that is the predecessor of all tasks defined in the plan.") 
 
  type(restriction(d:successor someValuesFrom(c:task))) 
  type(<e:control-task>) 
  type(restriction(d:predecessor allValuesFrom(complementOf(c:task)))) 
  value(<d:specifically-constantly-dependent-on> <e:readiness-task>) 
  value(c:specializes <e:activation-task>)) 
 Individual(<e:branching-task> 
  annotation(rdfs:comment "A task that articulates the plan into an ordered set of tasks.") 
 
  type(restriction(<d:direct-successor> someValuesFrom(c:task))) 
  type(restriction(c:sequences allValuesFrom(<e:planning-activity>))) 
  type(<e:control-task>) 
  type(restriction(<d:direct-successor> minCardinality(2)))) 
 Individual(<e:case-task> 
  annotation(rdfs:comment "A case task is a task branched to a set of tasks that are not executable concurrently.  
In order to choose the task to be executed, preliminary deliberation tasks should be executed.  
A case task sequences a decision activity (a kind of mental event involving rationality) that has a deliberation state as 
outcome (sequenced by a deliberation task).") 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 130 of 140 

 
  type(restriction(c:sequences allValuesFrom(<e:decision-activity>))) 
  type(owl:Thing) 
  type(<e:control-task>) 
  value(c:specializes <e:branching-task>) 
  value(<d:direct-successor> <e:deliberation-task>)) 
 Individual(<e:completion-task> 
  annotation(rdfs:comment "A specialization of ending-task, aimed at sequencing events that end a plan execution having 
reached its main-goal.") 
 
  type(<e:control-task>) 
  value(c:specializes <e:ending-task>)) 
 Individual(<e:concurrency-task> 
  annotation(rdfs:comment "A concurrent task is a task branched to a set of tasks executable concurrently (the sequenced 
perdurants can overlap), which means that no deliberation task is performed in order to choose among them. A concurrent 
task has at least one successor synchronization task, which is aimed at waiting for the execution of all (except the optional 
ones) tasks direct successor to the concurrent (or any order, see below) one. 
 
The axioms cannot be expressed fully in OWL-DL (no value mapping available).") 
 
  type(owl:Thing) 
  type(<e:control-task>) 
  type(restriction(<d:direct-successor> someValuesFrom(intersectionOf(restriction(c:sequences 
allValuesFrom(intersectionOf(d:perdurant restriction(d:overlaps someValuesFrom(intersectionOf(restriction(<c:sequenced-
by> someValuesFrom(c:task)) d:perdurant)))))) c:task)))) 
  value(c:specializes <e:branching-task>) 
  value(d:successor <e:synchro-task>)) 
 Individual(<e:consideredness-task> 
  annotation(rdfs:comment "The task sequencing a decision activity, aiming at if action has to be taken in order to start a plan 
execution.") 
 
  type(owl:Thing) 
  type(restriction(<d:direct-predecessor> someValuesFrom(oneOf(<e:possibility-task>)))) 
  type(<e:plan-assessment-task>) 
  value(c:specializes <e:case-task>)) 
 Individual(<e:decidedness-task> 
  annotation(rdfs:comment "The task sequencing a decision to take action in order to start a plan execution.") 
 
  type(owl:Thing) 
  type(restriction(<d:direct-predecessor> someValuesFrom(oneOf(<e:acceptation-task>)))) 
  type(<e:plan-assessment-task>) 
  value(c:specializes <e:deliberation-task>)) 
 Individual(<e:deliberation-task> 
  annotation(rdfs:comment "A deliberation task is a control task that sequences deliberation states (decisions taken after a 
case task execution).") 
 
  type(owl:Thing) 
  type(<e:control-task>) 
  type(restriction(c:sequences allValuesFrom(<e:decision-state>))) 
  value(<d:direct-predecessor> <e:case-task>)) 
 Individual(<e:ending-task> 
  annotation(rdfs:comment "An ending task is a control task that has no successor tasks defined in the plan.") 
 
  type(<e:control-task>) 
  type(restriction(d:predecessor someValuesFrom(c:task))) 
  type(restriction(d:successor allValuesFrom(complementOf(c:task))))) 
 Individual(<e:loop-for> 
  annotation(rdfs:comment "A loop task with a defined number (and possibly frequency) of iterations.") 
 
  type(<e:control-task>) 
  value(c:specializes <e:loop-task>)) 
 Individual(<e:loop-task> 
  annotation(rdfs:comment "A loop task is a control task that has as successor an action (or complex) task that sequences at 
least two distinct activities sharing a minimal common set of properties (they have a minimal common type). 
 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 131 of 140 

Notice that MinimalCommonType cannot be formalised as a first-order predicate, and then neither in OWL-DL. It can be 
considered a trivial guideline: ?when sequencing looped actions, choose a definite action class from the ground ontology?. 
Some relations typically hold for loop tasks. Exit condition can be used to state what deliberation task (see below) causes to 
exit the cycle; iteration interval can be used to state how much time should be taken by each iteration of the looped activity; 
iteration cardinality can be used to state how many times the action should be repeated.") 
 
  type(<e:control-task>)) 
 Individual(<e:loop-until> 
  annotation(rdfs:comment "A loop task, which specifies when a certain condition becomes true for a cyclical task to exit.") 
 
  type(<e:control-task>) 
  value(<e:exit-condition> <e:deliberation-task>) 
  value(c:specializes <e:loop-task>)) 
 Individual(<e:parallel-task> 
  annotation(rdfs:comment "A task for parallel concurrent activities.") 
 
  type(restriction(<d:direct-successor> someValuesFrom(intersectionOf(restriction(<e:sibling-task> 
someValuesFrom(c:task)) c:task)))) 
  type(restriction(<d:direct-successor> someValuesFrom(intersectionOf(restriction(<e:sibling-task> 
someValuesFrom(c:task)) restriction(c:sequences allValuesFrom(intersectionOf(restriction(<b:temporally-coincides> 
someValuesFrom(intersectionOf(restriction(<c:sequenced-by> allValuesFrom(c:task)) k:activity))) k:activity))) c:task)))) 
  type(restriction(<d:direct-successor> minCardinality(2))) 
  type(<e:control-task>) 
  value(c:specializes <e:concurrency-task>)) 
 Individual(<e:partly-case-task> 
  annotation(rdfs:comment "A control task that directly precedes both a case task and some other task. 
It specializes the branching task.") 
 
  type(restriction(<d:direct-successor> someValuesFrom(intersectionOf(complementOf(oneOf(<e:case-task>)) c:task)))) 
  type(<e:control-task>) 
  value(c:specializes <e:branching-task>) 
  value(<d:direct-successor> <e:case-task>)) 
 Individual(<e:possibility-task> 
  annotation(rdfs:comment "The task sequencing an activity from which the possibility is raised to execute a plan.") 
 
  type(owl:Thing) 
  type(<e:plan-assessment-task>)) 
 Individual(<e:preparedness-task> 
  annotation(rdfs:comment "The task sequencing an assessment that the activities aiming at creating the prerequisites to start 
a plan execution are completed.") 
 
  type(owl:Thing) 
  type(<e:plan-assessment-task>) 
  type(restriction(<d:direct-predecessor> someValuesFrom(oneOf(<e:decidedness-task>))))) 
 Individual(<e:reactivation-task> 
  annotation(rdfs:comment "An activation task to start a plan execution after it has been suspended.") 
 
  type(restriction(<d:direct-predecessor> someValuesFrom(oneOf(<e:suspension-task>)))) 
  type(<e:control-task>) 
  value(c:specializes <e:activation-task>)) 
 Individual(<e:readiness-task> 
  annotation(rdfs:comment "The task joining the decision and preparation phases of the plan assessment, with the activation 
phases of the plan.") 
 
  type(owl:Thing) 
  type(restriction(<d:direct-predecessor> someValuesFrom(oneOf(<e:preparedness-task>)))) 
  type(<e:plan-assessment-task>)) 
 Individual(<e:rejectedness-task> 
  annotation(rdfs:comment "The task sequencing a negative decision to adopt a plan execution.") 
 
  type(restriction(d:predecessor someValuesFrom(oneOf(<e:consideredness-task>)))) 
  type(<e:plan-assessment-task>) 
  value(c:specializes <e:deliberation-task>)) 
 Individual(<e:suspension-task> 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 132 of 140 

  annotation(rdfs:comment "A specialization of ending-task, aimed at sequencing events that end a plan execution without 
having reached its main-goal for a certain time") 
 
  type(owl:Thing) 
  type(<e:control-task>) 
  value(c:specializes <e:ending-task>)) 
 Individual(<e:synchro-task> 
  annotation(rdfs:comment "A task that joins a set a tasks after a branching. 
In particular, a synchronization task is aimed at waiting for the execution of all (except the optional ones) tasks that are direct 
successor to a concurrent or any order task.") 
 
  type(restriction(d:predecessor someValuesFrom(oneOf(<e:concurrency-task> <e:any-order-task>)))) 
  type(<e:control-task>) 
  type(restriction(<d:direct-predecessor> someValuesFrom(intersectionOf(restriction(<d:direct-predecessor> 
someValuesFrom(oneOf(<e:concurrency-task> <e:any-order-task>))) unionOf(<e:complex-task> <e:action-task>)))))) 
 Individual(<g:c-context> 
  annotation(rdfs:comment "The context role in Jakobson's theory of communication.") 
 
  type(<a:description-role>) 
  type(<g:communication-role>) 
  type(restriction(<c:played-by> allValuesFrom(c:description))) 
  value(c:specializes <g:s-context>) 
  value(<c:defined-by> <g:s-communication-theory>)) 
 Individual(<g:channel-role> 
  annotation(rdfs:comment "The channel role in Jakobson's theory of communication.") 
 
  type(<g:communication-role>) 
  type(restriction(<c:played-by> allValuesFrom(<d:physical-endurant>))) 
  value(<c:defined-by> <g:s-communication-theory>)) 
 Individual(<g:code-role> 
  annotation(rdfs:comment "The code role in Jakobson's theory of communication, which should be played by an 
information-encoding-system.") 
 
  type(<a:description-role>) 
  type(<g:communication-role>) 
  type(restriction(<c:played-by> allValuesFrom(<f:information-encoding-system>))) 
  value(<c:defined-by> <g:s-communication-theory>)) 
 Individual(<g:decoder-role> 
  annotation(rdfs:comment "A specialization of the interpreter role, played by the agents trying to conceive the description 
expressed by some information object created by agents playing the encoder role.") 
 
  type(<g:communication-role>) 
  type(<k:agent-driven-role>) 
  value(c:specializes <g:encoder-role>)) 
 Individual(<g:encoder-role> 
  annotation(rdfs:comment "A specialization of the interpreter role, played by creators of information objects expressing some 
description.") 
 
  type(<g:communication-role>) 
  type(<k:agent-driven-role>) 
  value(c:specializes <g:interpreter-role>)) 
 Individual(g:expression 
  annotation(rdfs:comment "Expression is a semiotic role played by information objects.  
It is used to fill the first domain of the  so-called 'interpretation function'. It can be considered equivalent to the 'message' 
communication role, but since communication theory and semiotic theories are different, it is more correct to say that a 
message role specializes an expression role.") 
 
  type(<g:semiotic-role>) 
  type(restriction(<c:played-by> allValuesFrom(<c:information-object>))) 
  value(<c:defined-by> <g:semiotic-interpretation-function>)) 
 Individual(<g:interpreter-role> 
  annotation(rdfs:comment "A generalization of the encoder and decoder roles in Jakobson's theory of communication, which 
should be played by an agent.") 
 
  type(<g:communication-role>) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 133 of 140 

  type(<k:agent-driven-role>) 
  value(<c:defined-by> <g:s-communication-theory>)) 
 Individual(g:meaning 
  annotation(rdfs:comment "Meaning is a semiotic role played by descriptions whatsoever.  
It is used to fill the range of the  so-called 'interpretation function'. 
It is not equivalent to any communication function.") 
 
  type(<a:description-role>) 
  type(<g:semiotic-role>) 
  type(restriction(<c:played-by> allValuesFrom(c:description))) 
  value(<c:defined-by> <g:semiotic-interpretation-function>)) 
 Individual(<g:message-role> 
  annotation(rdfs:comment "The message role in Jakobson's theory of communication, played by information objects. It 
specializes the expression role from semiotic interpretation theory.") 
 
  type(<g:communication-role>) 
  type(restriction(<c:played-by> allValuesFrom(<c:information-object>))) 
  value(c:specializes g:expression) 
  value(<c:defined-by> <g:s-communication-theory>)) 
 Individual(<g:s-communication-theory> 
  annotation(rdfs:comment "Jakobson defined six functions of communication that are compatible with Shannon's theory of 
information. They are the 'message', here covered by 'Message-Role', the context, covered here by 'C-Context', the code, 
covered by 'Code', plus 'Channel', 'Encoder', and 'Decoder', which are introduced below. Message-Role, C-Context, and Code 
can also be viewed as playing a semiotic role (Expression, S-Context, Semiotic-Code).  
For a communication theory in general, we also need other components that are not specified in Jakobson's theory', e.g. 'turn-
taking', governing the sequence of a communication process,  'communication parameters', governing the values that 
participants and events of a communication should have in order for the communication to be  successful (i.e. for the 
communication method to be satisfied), 'conversational maxims' (superordered theories) that provide guidelines for 
communication to be successful, etc.") 
 
  type(owl:Thing) 
  type(c:theory) 
  value(c:defines <g:message-role>) 
  value(c:defines <g:c-context>) 
  value(c:defines <g:channel-role>) 
  value(c:defines <g:code-role>) 
  value(c:defines <g:interpreter-role>)) 
 Individual(<g:s-context> 
  annotation(rdfs:comment "S-context (semiotic context) is played by descriptions and is a semiotic role. It is used to fill the 
second domain of the  so-called 'interpretation function'. 
It may be equivalent to the 'c-context' communication role, but since communication theory and semiotic theories are 
different, it is more correct to say that c-context (communication context) specializes s-context.") 
 
  type(<a:description-role>) 
  type(<g:semiotic-role>) 
  type(restriction(<c:played-by> allValuesFrom(c:description))) 
  value(<c:defined-by> <g:semiotic-interpretation-function>)) 
 Individual(<g:semiotic-interpretation-function> 
  annotation(rdfs:comment "Interpretation functions are descriptions that can include roles either for semiotics or for formal 
semantics. 
 
Here we only characterize a basic, simple theory of semiotic interpretation. Three semiotic roles are defined: s-context 
(semiotic context), expression, and meaning. 
 
It has complex dependencies to mental objects, social objects, as well as references to entities as such, but we currently prefer 
to put it here as a placeholder (a forthcoming ontology of mind should give some more detail on those issues). See semiotic 
roles for further comments.") 
 
  type(c:relation) 
  type(owl:Thing) 
  type(restriction(c:defines someValuesFrom(<g:semiotic-role>))) 
  value(c:defines g:meaning) 
  value(c:defines g:expression) 
  value(c:defines <g:s-context>)) 
 
 DisjointClasses(c:description c:concept) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 134 of 140 

 DisjointClasses(d:endurant d:quality) 
 DisjointClasses(d:endurant d:perdurant) 
 DisjointClasses(<d:amount-of-matter> <d:physical-object>) 
 DisjointClasses(<d:abstract-quality> <d:physical-quality>) 
 DisjointClasses(d:abstract d:perdurant) 
 DisjointClasses(c:description c:figure) 
 DisjointClasses(<d:physical-object> d:feature) 
 DisjointClasses(<c:information-object> c:concept) 
 DisjointClasses(j:collection c:figure) 
 DisjointClasses(d:abstract d:endurant) 
 DisjointClasses(j:collection c:description) 
 DisjointClasses(<d:physical-region> <d:temporal-region>) 
 DisjointClasses(<d:abstract-region> <d:temporal-region>) 
 DisjointClasses(c:role c:parameter) 
 DisjointClasses(c:situation <c:information-object>) 
 DisjointClasses(c:figure c:concept) 
 DisjointClasses(<c:information-object> j:collection) 
 DisjointClasses(d:abstract d:quality) 
 DisjointClasses(c:role c:course) 
 DisjointClasses(<d:physical-endurant> <d:arbitrary-sum>) 
 DisjointClasses(<d:non-agentive-physical-object> <d:agentive-physical-object>) 
 DisjointClasses(<d:amount-of-matter> d:feature) 
 DisjointClasses(c:situation c:concept) 
 DisjointClasses(c:situation c:description) 
 DisjointClasses(d:quality d:perdurant) 
 DisjointClasses(<d:physical-region> <d:abstract-region>) 
 DisjointClasses(<d:temporal-quality> <d:abstract-quality>) 
 DisjointClasses(<d:arbitrary-sum> <d:non-physical-endurant>) 
 DisjointClasses(c:situation j:collection) 
 DisjointClasses(<d:temporal-quality> <d:physical-quality>) 
 DisjointClasses(c:situation c:figure) 
 DisjointClasses(<e:action-task> <e:control-task>) 
 DisjointClasses(<d:physical-endurant> <d:non-physical-endurant>) 
 DisjointClasses(j:collection c:concept) 
 DisjointClasses(<c:information-object> c:description) 
 DisjointClasses(c:course c:parameter) 
 
 SubPropertyOf(<e:sibling-task> <d:mediated-relation>) 
 SubPropertyOf(<c:requisite-for> <d:immediate-relation>) 
 SubPropertyOf(c:realizes <c:referenced-by>) 
 SubPropertyOf(<d:specific-constant-constituent> <d:immediate-relation>) 
 SubPropertyOf(<d:generically-dependent-on> <d:immediate-relation-i>) 
 SubPropertyOf(<c:refined-by> <d:proper-part-of>) 
 SubPropertyOf(<d:strong-connection> <d:mediated-relation>) 
 SubPropertyOf(<m:generic-target-of> <m:functional-participant-in>) 
 SubPropertyOf(<c:temporary-component> c:component) 
 SubPropertyOf(<b:temporally-overlaps> <b:temporal-relation>) 
 SubPropertyOf(b:precedes <b:temporal-relation>) 
 SubPropertyOf(<d:temporary-proper-part> <d:proper-part>) 
 SubPropertyOf(<c:involved-in> <d:mediated-relation-i>) 
 SubPropertyOf(<k:obliged-to> <c:attitude-towards>) 
 SubPropertyOf(<n:material-place-of> <n:place-of>) 
 SubPropertyOf(<d:weak-connection> <d:immediate-relation>) 
 SubPropertyOf(<e:task-postcondition-of> <d:mediated-relation-i>) 
 SubPropertyOf(k:uses <k:co-participates-with>) 
 SubPropertyOf(e:influences <d:specific-constant-dependent>) 
 SubPropertyOf(<d:t-inherent-in> <d:inherent-in>) 
 SubPropertyOf(<c:expected-setting> <d:mediated-relation-i>) 
 SubPropertyOf(<d:temporary-participant> d:participant) 
 SubPropertyOf(<k:regulated-by> c:satisfies) 
 SubPropertyOf(<c:expanded-by> <d:proper-part-of>) 
 SubPropertyOf(<c:d-used-by> <c:temporary-component-of>) 
 SubPropertyOf(<d:r-location-of> <d:immediate-relation-i>) 
 SubPropertyOf(<d:temporary-part> d:part) 
 SubPropertyOf(<i:ruled-by> <d:mediated-relation-i>) 
 SubPropertyOf(<a:unit-of> <d:r-location-of>) 
 SubPropertyOf(<d:exact-location-of> <d:generic-location-of>) 
 SubPropertyOf(<e:influenced-by> <d:specifically-constantly-dependent-on>) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 135 of 140 

 SubPropertyOf(k:postcondition <d:mediated-relation>) 
 SubPropertyOf(<d:abstract-location-of> <d:exact-location-of>) 
 SubPropertyOf(<m:theme-of> <m:patient-of>) 
 SubPropertyOf(<c:c-sat-by> <c:satisfied-by>) 
 SubPropertyOf(<c:metaphorically-played-by> <c:played-by>) 
 SubPropertyOf(<a:geographic-part> <n:descriptive-place-of>) 
 SubPropertyOf(<c:has-in-scope> c:references) 
 SubPropertyOf(<b:temporal-location> <d:exact-location>) 
 SubPropertyOf(<d:generic-dependent> <d:immediate-relation>) 
 SubPropertyOf(<b:temporally-coincides> <b:temporal-relation>) 
 SubPropertyOf(<c:temporary-component-of> <d:partly-compresent>) 
 SubPropertyOf(<n:spatial-location-of> <d:physical-location-of>) 
 SubPropertyOf(<m:patient-of> <m:functional-participant-in>) 
 SubPropertyOf(<d:abstract-location> <d:exact-location>) 
 SubPropertyOf(<b:temporally-includes> <b:temporal-relation>) 
 SubPropertyOf(<c:specialized-by> <d:immediate-relation-i>) 
 SubPropertyOf(<d:part-of> <d:immediate-relation-i>) 
 SubPropertyOf(n:place <n:approximate-location>) 
 SubPropertyOf(<c:optionally-used-by> <c:d-used-by>) 
 SubPropertyOf(<d:generic-constituent> <d:immediate-relation>) 
 SubPropertyOf(<m:generic-target> <m:functional-participant>) 
 SubPropertyOf(<d:quale-of> <d:q-location-of>) 
 SubPropertyOf(<n:p-spatial-location-of> <d:exact-location-of>) 
 SubPropertyOf(b:concludes <b:temporally-included-in>) 
 SubPropertyOf(n:origin <n:material-place>) 
 SubPropertyOf(<c:metaphorically-plays> c:plays) 
 SubPropertyOf(<e:task-precondition> <d:mediated-relation>) 
 SubPropertyOf(<c:attitude-target-of> <c:modal-target-of>) 
 SubPropertyOf(<c:modal-target> <d:immediate-relation>) 
 SubPropertyOf(<c:deputed-by> <d:immediate-relation-i>) 
 SubPropertyOf(<k:method-of> c:expects) 
 SubPropertyOf(<c:realized-by> c:references) 
 SubPropertyOf(<n:origin-of> <n:material-place-of>) 
 SubPropertyOf(c:conceives <d:immediate-relation>) 
 SubPropertyOf(<e:achievable-through> c:references) 
 SubPropertyOf(k:makes <k:co-participates-with>) 
 SubPropertyOf(<j:unified-by> <c:referenced-by>) 
 SubPropertyOf(<k:precondition-of> <d:mediated-relation-i>) 
 SubPropertyOf(m:substrate <m:functional-participant>) 
 SubPropertyOf(<d:temporary-part-of> <d:partly-compresent>) 
 SubPropertyOf(<m:target-of> <m:patient-of>) 
 SubPropertyOf(c:satisfies <d:intensionally-referenced-by>) 
 SubPropertyOf(<d:generic-location-of> <d:mediated-relation-i>) 
 SubPropertyOf(<d:temporary-atomic-part> <d:temporary-proper-part>) 
 SubPropertyOf(m:product <m:functional-participant>) 
 SubPropertyOf(<e:main-goal> <d:proper-part>) 
 SubPropertyOf(<b:met-by> <b:temporally-connected>) 
 SubPropertyOf(<e:iteration-interval> <d:mediated-relation>) 
 SubPropertyOf(m:result <p:causally-precedes>) 
 SubPropertyOf(<n:spatial-location> <d:physical-location>) 
 SubPropertyOf(<k:right-to> <c:attitude-towards>) 
 SubPropertyOf(c:plays <c:classified-by>) 
 SubPropertyOf(<c:setting-for> c:references) 
 SubPropertyOf(k:exploits c:involves) 
 SubPropertyOf(c:setting <c:referenced-by>) 
 SubPropertyOf(<d:physical-location> <d:exact-location>) 
 SubPropertyOf(m:substrate <d:total-constant-participant>) 
 SubPropertyOf(c:requisite <d:immediate-relation-i>) 
 SubPropertyOf(<k:exploited-by> <c:involved-in>) 
 SubPropertyOf(<e:adopts-goal> k:adopts) 
 SubPropertyOf(<m:result-of> <p:causally-follows>) 
 SubPropertyOf(<c:acts-for> <d:mediated-relation>) 
 SubPropertyOf(<d:sibling-part> <d:mediated-relation>) 
 SubPropertyOf(<k:co-participates-with> <d:mediated-relation>) 
 SubPropertyOf(<f:q-represented-by> <d:mediated-relation-i>) 
 SubPropertyOf(<c:r-sat-by> <c:satisfied-by>) 
 SubPropertyOf(<c:acted-by> <d:mediated-relation-i>) 
 SubPropertyOf(<m:resource-for> <m:used-in>) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 136 of 140 

 SubPropertyOf(<b:temporally-included-in> <b:temporal-relation-i>) 
 SubPropertyOf(<b:concluded-by> <b:temporally-includes>) 
 SubPropertyOf(<h:subject-target-of> <c:attitude-target-of>) 
 SubPropertyOf(<f:ordered-by> <d:mediated-relation>) 
 SubPropertyOf(c:classifies <d:intensionally-references>) 
 SubPropertyOf(<d:temporary-proper-part> <d:temporary-part>) 
 SubPropertyOf(d:host <d:specifically-constantly-dependent-on>) 
 SubPropertyOf(b:meets <b:temporally-connected>) 
 SubPropertyOf(<n:situation-place-of> <n:approximate-location-of>) 
 SubPropertyOf(<b:temporally-connected> <b:temporal-relation>) 
 SubPropertyOf(<c:satisfied-by> <d:intensionally-references>) 
 SubPropertyOf(c:involves <d:mediated-relation>) 
 SubPropertyOf(c:refines <d:proper-part>) 
 SubPropertyOf(<k:empowered-to> <c:attitude-towards>) 
 SubPropertyOf(<b:temporal-location-of> <d:exact-location-of>) 
 SubPropertyOf(<b:time-of-presence-of> <b:e-temporal-location-of>) 
 SubPropertyOf(<c:conceived-by> <d:immediate-relation-i>) 
 SubPropertyOf(<m:product-of> <m:functional-participant-in>) 
 SubPropertyOf(<d:temporary-part-of> <d:part-of>) 
 SubPropertyOf(<o:functionally-unified-by> <c:referenced-by>) 
 SubPropertyOf(e:subgoal d:part) 
 SubPropertyOf(<k:made-by> <k:co-participates-with>) 
 SubPropertyOf(<n:situation-place> <n:approximate-location>) 
 SubPropertyOf(<e:iteration-interval-of> <d:mediated-relation-i>) 
 SubPropertyOf(k:precondition <d:mediated-relation>) 
 SubPropertyOf(<c:valued-by> c:classifies) 
 SubPropertyOf(m:prescribes m:performs) 
 SubPropertyOf(<o:functionally-unifies> c:references) 
 SubPropertyOf(<c:d-uses> <c:temporary-component>) 
 SubPropertyOf(c:about c:references) 
 SubPropertyOf(<n:participant-place> <n:approximate-location>) 
 SubPropertyOf(<d:proper-part> d:part) 
 SubPropertyOf(<a:geographic-part-of> <n:descriptive-place>) 
 SubPropertyOf(<n:descriptive-place> <n:approximate-location>) 
 SubPropertyOf(<m:instrument-of> <m:used-in>) 
 SubPropertyOf(m:instrument <m:use-of>) 
 SubPropertyOf(<c:played-by> c:classifies) 
 SubPropertyOf(<j:member-of> <d:generic-constituent-of>) 
 SubPropertyOf(<d:q-location> <d:immediate-relation>) 
 SubPropertyOf(<k:used-by> <k:co-participates-with>) 
 SubPropertyOf(<c:parametrized-by> <d:mediated-relation-i>) 
 SubPropertyOf(<k:created-by> <c:conceived-by>) 
 SubPropertyOf(<k:postcondition-of> <d:mediated-relation-i>) 
 SubPropertyOf(<d:temporary-part> <d:partly-compresent>) 
 SubPropertyOf(<d:q-present-at> <d:mediated-relation>) 
 SubPropertyOf(<d:time-of-q-presence-of> <d:mediated-relation-i>) 
 SubPropertyOf(<c:required-by> <d:immediate-relation-i>) 
 SubPropertyOf(<d:atomic-part-of> <d:part-of>) 
 SubPropertyOf(<m:use-of> <m:functional-participant>) 
 SubPropertyOf(<c:c-sat> c:satisfies) 
 SubPropertyOf(<k:obligation-for> <c:attitude-target-of>) 
 SubPropertyOf(<c:component-of> <d:proper-part-of>) 
 SubPropertyOf(<d:total-temporary-participant-in> <d:temporary-participant-in>) 
 SubPropertyOf(<c:p-sat-by> <c:satisfied-by>) 
 SubPropertyOf(<d:constant-participant-in> <d:participant-in>) 
 SubPropertyOf(i:rules <d:mediated-relation>) 
 SubPropertyOf(<c:r-sat> c:satisfies) 
 SubPropertyOf(<h:subjected-to> <c:attitude-towards>) 
 SubPropertyOf(<e:disposition-to> <k:used-by>) 
 SubPropertyOf(<e:discarded-within> <c:d-used-by>) 
 SubPropertyOf(<d:total-temporary-participant> <d:temporary-participant>) 
 SubPropertyOf(<d:constant-participant> d:participant) 
 SubPropertyOf(<c:sequenced-by> <c:classified-by>) 
 SubPropertyOf(<b:temporal-relation-i> <d:mediated-relation-i>) 
 SubPropertyOf(<d:spatio-temporal-presence-of> <d:exact-location-of>) 
 SubPropertyOf(<e:task-precondition-of> <d:mediated-relation-i>) 
 SubPropertyOf(b:starts <b:temporally-included-in>) 
 SubPropertyOf(<b:temporal-relation> <d:mediated-relation>) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 137 of 140 

 SubPropertyOf(<k:right-task-for> <c:attitude-target-of>) 
 SubPropertyOf(j:characterizes <d:immediate-relation>) 
 SubPropertyOf(<h:desire-target-of> <c:attitude-target-of>) 
 SubPropertyOf(<j:extensionally-equivalent> <d:immediate-relation>) 
 SubPropertyOf(<h:bdi-target-of> <c:attitude-target-of>) 
 SubPropertyOf(<e:subgoal-of> <d:part-of>) 
 SubPropertyOf(<b:present-at> <b:e-temporal-location>) 
 SubPropertyOf(<c:referenced-by> <d:immediate-relation-i>) 
 SubPropertyOf(<n:descriptive-origin> <n:descriptive-place>) 
 SubPropertyOf(<d:exact-location> <d:generic-location>) 
 SubPropertyOf(<c:defined-by> <c:d-used-by>) 
 SubPropertyOf(c:expresses c:references) 
 SubPropertyOf(c:interprets <d:immediate-relation>) 
 SubPropertyOf(<c:attitude-towards> <c:modal-target>) 
 SubPropertyOf(<d:life-of> <d:constant-participant>) 
 SubPropertyOf(<b:e-temporal-location-of> <d:exact-location-of>) 
 SubPropertyOf(j:unifies c:references) 
 SubPropertyOf(<e:adopts-plan> k:adopts) 
 SubPropertyOf(<m:state-of> m:substrate) 
 SubPropertyOf(<n:place-of> <n:approximate-location-of>) 
 SubPropertyOf(a:unit <d:r-location>) 
 SubPropertyOf(<m:functional-participant-in> <d:participant-in>) 
 SubPropertyOf(<c:in-scope-of> <c:referenced-by>) 
 SubPropertyOf(<d:intensionally-referenced-by> <c:referenced-by>) 
 SubPropertyOf(<m:prescribed-by> <m:performed-by>) 
 SubPropertyOf(m:theme m:patient) 
 SubPropertyOf(<m:has-state> <m:substrate-of>) 
 SubPropertyOf(<n:d-spatial-location> <d:exact-location>) 
 SubPropertyOf(<f:q-represents> <d:mediated-relation>) 
 SubPropertyOf(<b:started-by> <b:temporally-includes>) 
 SubPropertyOf(<e:task-postcondition> <d:mediated-relation>) 
 SubPropertyOf(<d:direct-predecessor> d:predecessor) 
 SubPropertyOf(<e:main-goal-of> <d:proper-part-of>) 
 SubPropertyOf(<d:mereologically-coincides> <d:partly-compresent>) 
 SubPropertyOf(<d:total-constant-participant-in> <d:constant-participant-in>) 
 SubPropertyOf(<c:temporary-component-of> <c:component-of>) 
 SubPropertyOf(j:member <d:generic-constituent>) 
 SubPropertyOf(<c:classified-by> <d:intensionally-referenced-by>) 
 SubPropertyOf(f:orders <d:mediated-relation-i>) 
 SubPropertyOf(d:life <d:constant-participant-in>) 
 SubPropertyOf(d:predecessor <d:immediate-relation-i>) 
 SubPropertyOf(<c:admitted-by> <d:mediated-relation-i>) 
 SubPropertyOf(<n:material-place> n:place) 
 SubPropertyOf(<c:p-sat> c:satisfies) 
 SubPropertyOf(<d:specific-constant-constituent-of> <d:immediate-relation-i>) 
 SubPropertyOf(<d:boundary-of> <d:proper-part-of>) 
 SubPropertyOf(e:discards <c:d-uses>) 
 SubPropertyOf(<c:expected-by> <d:mediated-relation-i>) 
 SubPropertyOf(c:expands <d:proper-part>) 
 SubPropertyOf(<d:temporary-participant-in> <d:participant-in>) 
 SubPropertyOf(<d:host-of> <d:specific-constant-dependent>) 
 SubPropertyOf(m:target m:patient) 
 SubPropertyOf(c:admits <d:mediated-relation>) 
 SubPropertyOf(<c:optionally-uses> <c:d-uses>) 
 SubPropertyOf(<c:expected-setting-for> <d:mediated-relation>) 
 SubPropertyOf(<n:descriptive-place-of> <n:approximate-location-of>) 
 SubPropertyOf(i:enforces <c:involved-in>) 
 SubPropertyOf(<d:mereologically-coincides> <d:temporary-part>) 
 SubPropertyOf(k:creates c:conceives) 
 SubPropertyOf(<d:q-location-of> <d:immediate-relation-i>) 
 SubPropertyOf(<d:proper-part-of> <d:part-of>) 
 SubPropertyOf(<c:expressed-by> <c:referenced-by>) 
 SubPropertyOf(<n:descriptive-origin-of> <n:descriptive-place-of>) 
 SubPropertyOf(<d:r-location> <d:immediate-relation>) 
 SubPropertyOf(<j:covered-by> <d:immediate-relation-i>) 
 SubPropertyOf(<d:participant-in> <d:immediate-relation-i>) 
 SubPropertyOf(<d:specifically-constantly-dependent-on> <d:immediate-relation-i>) 
 SubPropertyOf(m:patient <m:functional-participant>) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 138 of 140 

 SubPropertyOf(d:participant <d:immediate-relation>) 
 SubPropertyOf(<m:used-in> <m:functional-participant-in>) 
 SubPropertyOf(<c:modal-target-of> <d:immediate-relation-i>) 
 SubPropertyOf(<p:causally-follows> b:follows) 
 SubPropertyOf(a:duration <b:temporal-location>) 
 SubPropertyOf(c:deputes <d:immediate-relation>) 
 SubPropertyOf(k:regulates <c:satisfied-by>) 
 SubPropertyOf(<d:specific-constant-dependent> <d:immediate-relation>) 
 SubPropertyOf(j:covers <d:immediate-relation>) 
 SubPropertyOf(<d:partly-compresent> <d:mediated-relation>) 
 SubPropertyOf(<d:identity-n> <d:immediate-relation>) 
 SubPropertyOf(<m:substrate-of> <d:total-constant-participant-in>) 
 SubPropertyOf(<d:physical-location-of> <d:exact-location-of>) 
 SubPropertyOf(<i:enforced-by> c:involves) 
 SubPropertyOf(<a:time-of-happening-of> <b:time-of-presence-of>) 
 SubPropertyOf(<d:intensionally-references> c:references) 
 SubPropertyOf(c:references <d:immediate-relation>) 
 SubPropertyOf(<n:participant-place-of> <n:approximate-location-of>) 
 SubPropertyOf(<c:temporary-component> <d:partly-compresent>) 
 SubPropertyOf(<j:characterized-by> <d:immediate-relation-i>) 
 SubPropertyOf(h:bdi <c:attitude-towards>) 
 SubPropertyOf(<p:causally-precedes> b:precedes) 
 SubPropertyOf(<k:has-method> <c:expected-by>) 
 SubPropertyOf(<h:desire-towards> <c:attitude-towards>) 
 SubPropertyOf(c:sequences c:classifies) 
 SubPropertyOf(<d:generic-constituent-of> <d:immediate-relation-i>) 
 SubPropertyOf(<a:happens-at> <b:present-at>) 
 SubPropertyOf(<a:duration-of> <b:temporal-location-of>) 
 SubPropertyOf(<d:generic-location> <d:mediated-relation>) 
 SubPropertyOf(<e:exit-condition> d:successor) 
 SubPropertyOf(m:performs <m:functional-participant-in>) 
 SubPropertyOf(<d:temporary-proper-part-of> <d:proper-part-of>) 
 SubPropertyOf(<f:refers-to> <d:mediated-relation>) 
 SubPropertyOf(<n:d-spatial-location-of> <d:exact-location-of>) 
 SubPropertyOf(<d:atomic-part> d:part) 
 SubPropertyOf(<m:functional-participant> d:participant) 
 SubPropertyOf(<k:adopted-by> <c:conceived-by>) 
 SubPropertyOf(<c:interpreted-by> <d:immediate-relation-i>) 
 SubPropertyOf(<d:temporary-proper-part-of> <d:temporary-part-of>) 
 SubPropertyOf(<c:aboutness-of> <c:referenced-by>) 
 SubPropertyOf(<d:has-quale> <d:q-location>) 
 SubPropertyOf(c:component <d:proper-part>) 
 SubPropertyOf(<f:referred-by> <d:mediated-relation-i>) 
 SubPropertyOf(b:follows <b:temporal-relation-i>) 
 SubPropertyOf(<n:approximate-location-of> <d:generic-location-of>) 
 SubPropertyOf(k:adopts c:conceives) 
 SubPropertyOf(c:defines <c:d-uses>) 
 SubPropertyOf(c:requires <d:immediate-relation>) 
 SubPropertyOf(c:specializes <d:immediate-relation>) 
 SubPropertyOf(m:resource <m:use-of>) 
 SubPropertyOf(<d:temporary-atomic-part-of> <d:temporary-proper-part-of>) 
 SubPropertyOf(<d:spatio-temporally-present-at> <d:exact-location>) 
 SubPropertyOf(<k:empowered-for> <c:attitude-target-of>) 
 SubPropertyOf(<d:has-t-quality> <d:has-quality>) 
 SubPropertyOf(<b:e-temporal-location> <d:exact-location>) 
 SubPropertyOf(<e:exit-condition-of> d:predecessor) 
 SubPropertyOf(<n:p-spatial-location> <d:exact-location>) 
 SubPropertyOf(<d:inherent-in> <d:immediate-relation>) 
 SubPropertyOf(<d:has-quality> <d:immediate-relation-i>) 
 SubPropertyOf(<d:total-constant-participant> <d:constant-participant>) 
 SubPropertyOf(d:successor <d:immediate-relation>) 
 SubPropertyOf(c:expects <d:mediated-relation>) 
 SubPropertyOf(<d:direct-successor> d:successor) 
 SubPropertyOf(<c:value-for> <c:classified-by>) 
 SubPropertyOf(d:boundary <d:proper-part>) 
 SubPropertyOf(<m:performed-by> <m:functional-participant>) 
 SubPropertyOf(d:part <d:immediate-relation>) 
 SubPropertyOf(d:overlaps <d:mediated-relation>) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 139 of 140 

 SubPropertyOf(<n:approximate-location> <d:generic-location>) 
 SubPropertyOf(<d:identity-c> <d:immediate-relation>) 
 SubPropertyOf(c:parametrizes <d:mediated-relation>) 
 
) 
 

6.2 OWL-RDF abstract syntax of the sample Klett model 

 Individual(Klett:acquire_a_development_plan 
  type(e:goal)) 
 Individual(Klett:acquire_idea 
  type(d:plan)) 
 Individual(a:assistant 
  type(k:agent-driven-role) 
  value(k:duty-to Klett:disburden_project_manager)) 
 Individual(a:author 
  type(k:agent-driven-role) 
  value(k:obligation-to Klett:provide_content) 
  value(k:obligation-to Klett:providing_info_on_administrative_issues_regarding_content)) 
 Individual(Klett:bring_high_profits_to_Klett 
  type(e:goal)) 
 Individual(Klett:compilation_of_new_learning_material 
  type(e:complex-task)) 
 Individual(Klett:compile_development_plan 
  type(e:action-task)) 
 Individual(Klett:concept_design 
  type(d:plan) 
  value(d:d-uses Klett:technical_project_manager) 
  value(d:d-uses Klett:project_manager) 
  value(d:d-uses Klett:assistant) 
  value(d:d-uses Klett:author) 
  value(d:d-uses Klett:standard) 
  value(c:proper-part Klett:acquire_a_development_plan) 
  value(d:defines Klett:compile_development_plan) 
  value(d:defines Klett:providing_info_on_administrative_issues_regarding_content) 
  value(d:defines Klett:disburden_project_manager) 
  value(d:defines Klett:provide_info_on_technical_standards) 
  value(d:defines Klett:decide_on_content)) 
 Individual(Klett:concept_development 
  type(d:plan) 
  value(d:d-uses Klett:technical_project_manager) 
  value(d:d-uses Klett:project_manager) 
  value(d:d-uses Klett:assistant) 
  value(d:d-uses Klett:disburden_project_manager) 
  value(d:d-uses Klett:author) 
  value(d:d-uses Klett:provide_info_on_technical_standards) 
  value(d:d-uses Klett:standard) 
  value(c:proper-part Klett:develop_a_pilot_version_of_new_learning_material) 
  value(d:defines Klett:provide_content) 
  value(d:defines Klett:coordinate_compilation_of_new_learning_material) 
  value(d:defines Klett:set_deadlines_to_authors)) 
 Individual(Klett:coordinate_compilation_of_new_learning_material 
  type(e:any-order-task) 
  value(a:direct-successor Klett:compilation_of_new_learning_material)) 
 Individual(Klett:decide_on_content 
  type(e:action-task)) 
 Individual(Klett:develop_a_pilot_version_of_new_learning_material 
  type(e:goal)) 
 Individual(Klett:disburden_project_manager 
  type(e:action-task)) 
 Individual(Klett:producing_1_piece_of_new_learning_material 
  type(d:plan) 
  value(c:proper-part a:sales) 
  value(c:proper-part a:production) 
  value(c:proper-part Klett:bring_high_profits_to_Klett) 
  value(c:proper-part Klett:concept_design) 



METOKIS - 507164  D07 – Task taxonomies for knowledge content 

Version 2.0  Page 140 of 140 

  value(c:proper-part Klett:concept_development) 
  value(c:proper-part Klett:acquire_idea)) 
 Individual(Klett:production 
  type(d:plan)) 
 Individual(Klett:project_manager 
  type(k:agent-driven-role) 
  value(k:obligation-to Klett:coordinate_compilation_of_new_learning_material) 
  value(k:obligation-to Klett:set_deadlines_to_authors) 
  value(k:right-to Klett:decide_on_content) 
  value(k:duty-to Klett:compile_development_plan)) 
 Individual(Klett:provide_content 
  type(e:action-task)) 
 Individual(Klett:provide_info_on_technical_standards 
  type(e:action-task)) 
 Individual(Klett:providing_info_on_administrative_issues_regarding_content 
  type(e:action-task)) 
 Individual(Klett:right_as_value 
  type(d:parameter) 
  value(a:requisite-for a:standard)) 
 Individual(Klett:sales 
  type(d:plan)) 
 Individual(Klett:set_deadlines_to_authors 
  type(e:action-task)) 
 Individual(Klett:standard 
  type(d:role)) 
 Individual(Klett:technical_project_manager 
  type(k:agent-driven-role) 
  value(k:obligation-to Klett:provide_info_on_technical_standards)) 


