Roadmap for Tool Support for
Collaborative Ontology Engineering

by
Yiling Lu
B.Sc., XiAn Transportation University, 1994
A Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in the Department of Computer Science

We accept this thesis as conforming to the required standard

Dr. Margaret-Anne Storey, Supervisor (Department of Computer Science)

Dr. Daniela Damian, Departmental Member (Department of Computer Science)

Dr. Daniel M. Germén, Departmental Member (Department of Computer Science)

Dr. Eleni Stroulia, External Examiner (Department of Computing Science, University
of Alberta)

© Yiling Lu, 2003
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy
or other means, without permission of the author.

Supervisor: Dr. Margaret-Anne Storey

Abstract

An ontology is an explicit formal specification of terms and relations between termsin
adomain, and enables sharing and reuse of knowledge. More and more ontologies are
being devel oped, including examples such as WebOnto for the semantic web and
ontologies used to categorize products and services on large web sites (as ebay.com).
Enabling and facilitating collaborative ontology development — in order to take advantage
of distributed computing power and intellectual resources— is becoming a concern for
researchers in the ontology development field. Enhancing the efficiency of collaborative
work and reducing the time for ontology development will bring economic benefits.

Thisthesis reviews five existing ontology development tools and compares their
strengths and weaknesses in supporting collaborative work. Our researchinvestigates
issues that arise when people work collaboratively on ontologies, review several
groupware technologies, and discusses their potential to be used in supporting
collaborative ontology engineering. In addition, we investigate a lightweight mechanism
to support collaboration in a knowledge engineering tool known as Jambalaya.

Collectively this work constitutes a roadmap for tool designers creating or integrating
collaboration support into an ontology engineering environment. From this road map, we
conclude by providing a set of recommendations, for Protégé 2000, an established
ontology editing tool, for adding and improving its collaboration support features in the

future.

Examiners:

Dr. Margaret- Anne Storey, Supervisor (Department of Computer Science)

Dr. Daniela Damian, Departmental Member (Department of Computer Science)

Dr. Daniel M. Germén, Departmental Member (Department of Computer Science)

Dr. Eleni Stroulia, Externa Examiner (Department of Computing Science, University of Alberta)

Table of Contents

N = I = ¥ N 3 SRS [
TABLE OF CONTENTS ..ottt ettt st v
LIST OF TABLESottt sttt s nnenne s Vil
LIST OF FIGURES ...ttt sttt VIl
ACKNOWLEDGEMENTS ...ttt st st X
CHAPTER 1 INTRODUCTION.....cci ittt 1
11 OUNE Of TRESIS.....oiiiiieice e et 2
CHAPTER 2 ONTOLOGIESAND ONTOLOGY ENGINEERING 5
21 What iSan ONtOlOgY?.....ceeiuieieeieesieeie e st et s sre et et te e s reeae e e s e ensesneesns 5
211 USEOf ONOIOGIES.....c.eeiueieiierieeiieieieee ettt 7
2.1.2 Examples of ONtOIOQIES.ccueieeieeieciesie ettt 9

2.2 ONtology ENGINEEIINGeiiiiieeiieiiesie ettt ae e e e 11
2.2.3 Different Ontology Engineering Approaches.........ccccceveeveeceeseeriesenseeneenn 12
224 LifeCycleModel of an ONntologyccoeeererrirneereniie e 16

2.3 SUMIMEIY ..ottt r ettt b e b e sse e sb e e st e e e ne e s e snneneeene e 20
CHAPTER3 COMPUTER SUPPORTED COLLABORATIVE WORK 21
31 OVEVIEW Of GIOUPWEIE.......couereeeieeieeeeiesie ittt ss b sae e ne e e 22

CHAPTER 4 SURVEY OF CSCW SUPPORT FOR ONTOLOGY

DEVELOPMENT TOOLS ...ttt s tee e svee e st e e e e 26
o R @ g1 (o [o U= S Y USSR 26
N © 01 (o =0 [APPSR 29
4.3 APECKS ... bbbt 31

44 CO4 System and COyg ProtOCOL.........coeeieriiiieieeie e 33

4.4.1 The CO4Knowledge Base NEIWOIK..........ccccveieveeiieieeieceee e 35
T 0 1= 0= 20 00 S 38
4.6 A Comparison of Ontology Editing TOOIS........ccccceveeieeieneecece e 40
A7 SUMIMEIY .ttt st r e e e e sb e e s e e s e s be e b e sarenneenneenesneenne s 43

CHAPTERS DIMENSIONSOF THE PROBLEMSIN COLLABORATIVE

ONTOLOGY DEVELOPMENT ...ttt s 45
51 Distance and COMMUNICEEION.......cccueiuerueriereirieriesieeeeeeee e see e seeeas 46
5.2 Documentation and Knowledge Managementccccceeveeiiiecnieeccieesee e 51
53 Version Control and Change Trackingc.ccecererereeieenenesese e 52
o S U 1 0101 VSRR 55

CHAPTER 6 USING GROUPWARE FOR ONTOLOGY ENGINEERING...... 56
T R 1S = | Y= o] o S 56
6.2 WED POIEIS. ..o 58
6.3 Peer-10-Pear NEIWOIKS.......ccoiiiiecerereeces e 62

6.3.1 Taxonomy of COMPULEr SYSLEMS........cccereriiererrieeiie e 62
6.3.2 What are Peer-t0-Peer NEtWOIKS?.........ccoiieiiirieeeseseees e 63
6.3.3 HISIONCEl VIBW ... e 65
6.3.4 Different Peer-t0-Peer SYyStEMS........cooviiriirine e 66
6.3.5 Challenges to Peer-to-Peer TeChNOlOogy........ccccovrereeirinienineseseeseseeesienes 68
B.3.6 TX T A et b e a e ae e pe e aeenans 70
6.4 GroOVE WOIKSPECE.ccueeiueeeieiecteeite et st et ee sttt esre e e e e reenesneesneeneens 72

CHAPTER 7 COLLABORATIVE SUPPORT FOR PROTEGE-2000................ 75
7.1 Protégé-2000 and JXTAooiiiiieresesee et st 77
7.2 Capturing Group KNOWIEAGEcceiiriiieieieriese e 80
7.3 PrOMPLVIZ oot 86
7.4 LIVE BOOKMAEIKS.coueiiiiiiesiite st 89

7.4.1 Advanced Visualization and Navigation Engine for Protégé-2000.............. 90
7.4.2 Live BooKmarks in Detailccccooiiiiieiiinie s 91

7.4.3 Live Bookmark SpecifiCation..........ccceeuerierirerenineeeeee e 95

7.5 SUMM@IY ..ttt e bb e s be e e sbe e sabe e sabe e e nnres 96
CHAPTER 8 CONCLUSIONottt s 98
8.1 Summary of CONtIIDULIONS..........cccueieeiiriieceerie e 99
8.2 FULUNEWOIK ...ttt st 100
8.3 Concluding REMAIKS.........ccoueieiieiice et 101
BIBLIOGRAPHY ettt sttt be e e b e e snne e e enren s 102

APPENDIX A ot e 108

VI

List of Tables

Table 1: Ontology representation with different formalisms...........cccceoceveeveecececceceee 7
Table 2: Some Well-KNnown ONtOIOGIEScoeiieieeee e 11
Table 3: Approaches to ontology design [70]ccoveeeeieeiece e 12
Table 4: Classification Of CSCW SYSIEIMScveiiiiiirieierenesee e 24
Table 5: Fine grained categorization of groUPWAaIe...........ccceevereeieeseeseeieeseeseeeseesseeneens 24
Table 6: Structure of the concept history table in the NCI Thesaurus™..........cocoovveveee.. 54
Table 7: Overview comparison of Bug/Issue tracking system requirements................... 61

Table 8: Table of ontologies developed using different methodol ogies. (Some
methdologies are identified by the name of the deSIgNErs.)ccoccevevvnereneneenens 108

VIl

List of Figures

Figure 1. Example of libraries of ontologies (modified from [55])ccccevvvevvreerinrnnnne. 11
Figure 2: A collaborative approach to ontology design.........ccccveveeviivcvie s 15
Figure 3: Spiral model of software development [35]cccooerireiiienerereereeeeee 19
Figure 4: Architecture of the Ontolingua Server ([53]) ...covvevveieereeiececeere e 27
Figure 5: Client/Server architecture of OnNtoEdit ([102])ccevveerieeiieniiirencseseeeeee 31

Figure 6: Hierarchical knowledge base network and message flow (dark arrows). Bases
are organized in atree whose leaves are individual bases and nodes [50]. 36
Figure 7: The software architecture of CO,4 system. Boxes represent a software module,

Circled units are datalknowledge repositories and arrows represent the call of

program fuNCtioNality [50].......cccuerveiiriereee e 37
Figure 8: Editing classes, dots, and instances with Protégé-2000............cccceevveeeeiieennenne. 40
Figure 9: Work flow diagram for developing NCI Thesaurus™..........c.ccccovovenevecvennnnns 53
Figure 10: A KM architecture model shows how various parts of the system obtain, store,

classify, and distribute KNOWIEAJEooveiiriiiireieeeeee e 60
Figure 11:A Taxonomy of Computer SysStems [85]cccvveveeeeveeie e 63
Figure 12 A classification of existing P2P Systems [85]ccccvvveieienenereneneeeeeee 67
Figure 13 The project IXTA virtual network [103]cccccveieiieeieeieee e 71
Figure 14 JXTA software architeCture [S6]cooevereereeienesee e 72
Figure 15: A tentative idea for Protégé-2000 collaboration plug-in.........cccceeeveervreenne. 78
Figure 16: myJXTA application in group chat MOdEccceviveeieriiiicsie e 79
Figure 17: A diagram of the Shrimpbib architecture of integrated tools[28] 81
Figure 18: Discussion threads in Drupal fOrun...........cccoecveiiecie s 84
Figure 19: Screen capture for collaborative book writing in Drupdccveevereeene. 85
Figure 20: Table view in Prompt lists all the merged concepts from two versions of the

same ontology. There are about one thousand changeslisted in this list................. 87
Figure 21: Treemap VIEW iN PrOMPEVIZc.coouviieiice et 89
Figure 22: Treemap view in PrompViz, with al nodes open to leaf levd 89

Figure 23: Ontology visualization in Jambalayaccccceeveeeeieeniecie e 91

IX

Figure 24: Using Jambalaya working with the wine ontology; user is about to bookmark
tNIS VIEW INThE SCENE ...t nne s 9

Figure 25: The bookmark from Figure 24 is opened in a web browser. User has zoomed

into part of the bookmark to see more details using the zooming capacity of the SVG

Acknowledgements

| would like to express my deepest appreciation to my supervisor, Dr.
Margaret-Anne Storey, for having me as her student, for granting guidance and
mentorship and for al the support and encouragemert she has been giving me throughout
my graduate studies.

Thanks aso go to Dr. Daniela Damian, Dr. Daniel M. German, and Dr. Eleni Stroulia
for being my committee membersand reviewing my research

I would like to acknowledge the assistance provided to me by my fellow graduate
students in the CHISEL lab for their feedback and for making all the research activities
fun and exciting. Special thanks go to Neil Ernst, Liz Hargreaves and Victor Chong for
proof reading and providing comments and advice in the final stage of writing. All the
works presented in this thesis are not only from myself, but also include the diligent
contributions from Rob Lintern, Neil Ernst, Polly Allen, and David Perrin. Thisthesisis
another synergized result from the CHISEL research group at University of Victoria.

This work was funded by National Cancer Institute at United States.

To Debbie

Xl

Chapter 1 Introduction

Ontologies have moved beyond the domains of philosophy and library science, and are
now the concern of knowledge engineering, knowledge representation, domain modeling,
language engineering, database design, information retrieval and extraction, and
knowledge management and organization [82]. As ontologies become increasingly
common in a greater number of applications and as these applications become larger and
longer-lived, more and more ontologies are developed in distributed environments by
authors with disparate backgrounds [81].

This thesis examines the major ontology engineering methodol ogies being devel oped
and currently practiced, and surveys five widely used ontology authoring tools. The result
not only verifies the fact that collaborative ontology authoring is the inherent nature of
ontology engineering, but also indicates that collaborative ontology development is not
well supported by any of the existing ontology authoring tools or environments. This
presents a new challenge for tool designersin finding and designing tools that can better
support collaborative ontology development.

In searching of a solution to this, our researchinvestigates a range of tools and
technologies in the Computer Supported Collaborative Work (CSCW) domain in order to
determine how they can be used to support collaborative ontology devel opment.

Ontology engineering, from its infancy, has been closely related to software
engineering in terms of its methodologies and life cycle models. This thesis examines
some experiences in the Global Software Development (GSD) field in order to

understand the correl ation between distance and collaboration.

The focus of this work is not to completely cover the research area of collaborative
ontology engineering, but rather to study how to help ontology developers coordinate
their efforts across multiple, geographically distributed sites. The purpose of this
undertaking is to understand the state-of-the-art in collaborative tool support for ontology
engineering, and to explore the potential of some of the groupware technologies that have
been used in the global software development domain to solve collaboration problems.
The long term vision is to combine these two fields and create a collaborative ontology
engineering environment that provides collaboration support in multiple dimensions.
Ultimately this thesis aims to develop a roadmap for ontology tool designers, a road map
that may lead them to produce a comprehensive collaborative ontology engineering

environment.

1.1 Outline of Thesis

Starting from the second chapter, this thesis introduces the background and definitions
of key concepts in the field of ontology engineering, with a discussion of severa
ontology engineering approaches and life cycle models. Chapter 3 briefly introduces the
field of Computer Supported Collaborative Work (CSCW) and sets the stage for Chapter
6 where we further discuss the potentials and benefits of using CSCW technology to
support collaborative ontology engineering.

Chapter 4 provides a detailed survey of CSCW support provided by existing ontol ogy
development tools. By investigating several ontology engineering tools developed and
used in different domains, we gain valuable insights into the collaborative tasks these

tools support poorly or not at all.

In Chapter 5 we explore the challenges to collaborative ontology engineering
according to three dimensions:. distance and communication, documentation and
knowledge management, and version control and change tracking. We stand on the
experiences and lessons learned in the globa software development field, and look at
collaborative ontology engineering from the perspectives that are represented by those
dimensions. Global software engineering is a well-developed field, and problems such as
the impact of distance and communication to the cost of software development has been
well studied. On the other hand, collaborative ontology engineering is still in an early
stage of research with formal ontology languages (such as the Web Ontology Language
(OWL) and Resource Description Frame Work (RDF)) still evolving, and as such many
of the existing ontology development tools were designed without taking future
challenges, such as collaborative development, into account. Nevertheless, collaborative
work across distance in software engineering and ontology engineering share many
smilar characteristics, as our research show. Therefore, we believe that solutions from
software engineering can be borrowed and modified for usein collaborative ontology
engineering.

In Chapter 6, we dive deeper into the groupware technol ogies we have examined,
focusing on their potential to support collaborative ontology editing. Instant messaging
techniques, when implemented properly, have the potential to support spontaneous and
informal communicationwhile web portals can be used to support tasks in the area of
group knowledge management. We a so explore the Peer-to-Peer (P2P) network
technologies, which have been around for some time but arerelatively undeveloped in the

area of reliability and security. We also report an experiment where we evaluated the

possibility of adding collaborative support to a knowledge engineering tool based on a
P2P network.

Our recommendations are laid out in Chapter 7, where we discuss the details of how
collaborative support can be provided by the designers of the multi- user version of
Protégé-2000, a software tool for creating and editing ontologies and knowledge bases. In
particular, we explore how live bookmarks, a lightweight collaborative mechanism, can
be used with Protégé-2000.

This thesis concludes in Chapter 8 with a summary of contributions and areas for

future work.

Chapter 2 Ontologies and Ontology Engineering

In this chapter we examine the concept of ontologies and describe specific examples
of ontologies used in scientific and engineering domains. Following this, our discussion
moves into the area of ontology engineering, which succinctly, is about the processes and
methodologies that are used in creating ontologies. We aso discuss the life cycle model
of an ontology, which covers all the activities from conceptualization to maintenance and
ultimately retirement. The discussion of alife cycle model will help us understand the
ontology development tools we present later in Chapter 4. Although ot all the tools we
discuss in Chapter 4 are built to strictly support a particular ontology life cycle model we
discuss here, each one of the tools does support a particular ontology engineering
methodology and ontology life cycle model, which is often a hybrid model that can find

its roots from the distilled life cycle models presented in this chapter.

2.1 What isan Ontology?

The short answer to this question is that an ontology is the formal and explicit
conceptualization of a specific domain; it defines all the concepts and relations among
those concepts. The term ‘Ontology’ originates fromthe field of philosophy, where it
refers to the science or study of being.

Even so, the rich meaning of ontology can not really be described by one sentence,
and there hasbeen much discussion over the exact definition for this term. A careful
examination of some of the representative definitions will paint us a more complete
picture of what “ontology” means.

One of the best-known definitions is from Tom Gruber [57]:

“ ... An ontology is an explicit specification of a conceptualization. For Artificial
Intelligence systems what exists is that which can be represented. When the knowledge of
a domain isrepresented in a declarative formalism, the set of objects that can be
represented is called the universe of discourse. This set of objects, and the describable
relationship among them, are reflected in the representational vocabulary with which a
knowl edge-base program represents knowledge. Thus, in the context of Al, we can
describe the ontology of a program by defining a set of representational terms. In such an
ontol ogy, definitions associate the names of entities in the universe of discourse (e.g.
classes, relations, functions, or other objects) with human-readable text describing what
the names mean, and formal axioms that constrains the inter pretation and well-formed
use of these terms. Formally, an ontology is the statement of a logical theory”

In comparison, Neches' [91] believes: “An ontology defines the basic terms and
relations comprising the vocabulary of atopic area, as well as the rules for combining
terms and relations to define extensions to the vocabulary”, while Swartout [30] defines
ontology as: “An ontology is a hierarchically structured set of terms for describing a
domain that can be used as a skeletal foundation for a knowledge base.”

On the symbolic level, an ontology is the representation of a conceptual system via
logical theory; it is the vocabulary used by alogical theory and also the meta- level
specification of alogical theory [63]. At the knowledge level, we can look at an ontology
asaformal, explicit specification of a shared conceptualization. The formalism makes an
ontology maechine understandable as the explicit specification encompasses the complete
set of concepts, properties of concepts, relations, constraints, and axioms in the target
domain, while the shared specification of conceptualization exemplifies an ontology as
the abstract model of the world or a specific domain; it is the consensual knowledge of a
community.

An important concept is ontology commitment. For a common ontology, it is the

agreement to use a predefined vocabulary, developed through consensus from all users

and stakeholdersin a specific domain in a coherent and consistent manner [62]. It isaso

a guarantee of consistency, but not completeness, with respect to queries and assertions
using the vocabulary defined in the ontology [57]. In the design and implementation of an
ontology, we want to produce anontology that requires a minimum amount of
ontological commitments from its users. Since the primary purpose of creating an
ontology is to enable knowledge sharing and reusing, a base level of ontological
commitment sufficient must be ensured to support this purpose. An ontology should
make as few claims as possible about the world being modeled, this allows the
participating parties freedom to specialize and instantiate the ontology as necessary [57].
An ontology can be represented by languages with different degrees of formalism

[106], as summarized in Table 1:

Table 1: Ontology representation with different formalisms

Degree of Formalism Representation Language

Highly informal Natural language

Semi-informal Restricted and structured form of natural
language

Semi-formal Artificial and formally defined language

Rigorously formal Language with formal semantics, theorems
and proofs of such properties as soundness
and compl eteness

The design of an ontology should be independent of the representation language; even
though, the representation language is the technology that enables the exchanging,

sharing and reusing of an ontology.

2.1.1 Useof Ontologies

In this section, we will briefly discuss how ontologies have been used in the Semantic

Web and in software engineering field.

The concept of an ontology first gained wide application in the Artificial Intelligence
(Al) domain. In Al, knowledge in a computer system is thought of as something that is
explicitly represented and operated on by inference processes [39]. However, the redlity
isthat all information systems live on their knowledge of their application domains and
the model of the world.

The vision of the Semantic Web [34] is to add machine understandable semantics
(meta- information) to the World Wide Web by using an ontology to define and organize
this meta- information space. The Semantic Web aims to realize the integration of all the
information sources on the World Wide Web, alowing the reuse of data across
applications and to make intelligent Internet searching possible. The Semantic Web isan
extension of the World Wide Web in which information is given well-defined meanings
that better enable computers and people to work in cooperation [34]. The requirement to
encode machine-interpretable information on the Web led to the development of a
number of languages for representing this information [87]. Among these knowledge
representation languages are Resource Description Framework (RDF), Web Ontology
Language (OWL), DARPA Agent Markup Language (DAML), and Ontology Interface
Layer (OIL). At this stage, there is no consensus on which language or set of languages
should become the standard for the Semantic Web and so researchers and developers
continue to experiment with existing languages and to develop new ones [87].

Object-oriented design of a software system depends on the developers understanding
of and commitment to the model of the relevant domain. The result of object-oriented
analysisis actualy adraft of the domain ontology [44]. Interfaces, classes (their

attributes and procedures) and the hierarchical system that organizes them is a close

model to the application domain, and can often be reused for a different application
program in the same or related domain.

One of the problems software engineering is now facing is the lack of concrete and
consistent formal bases for making modeling decisions [32]. Advocates of the Unified
Modeling Language (UML) are using UML as an ontology modeling language and some
experimental works have been reported [43]. UML as a graphical language has its own
problems as it requires a significant amount of ontology commitment instead of the
minimal ontology commitments mentioned previously, and it does not have the formal
semantics that an ontology modeling language requires [97]. We are withessing the
efforts and trends to make the research of domain modeling in both software engineering
and ontology engineering field converge over time. As information systems model large
knowledge domains, domain ontologies may become as important in general software
systems asin many areas of Al [39].

Many other examples of ontologies use can be found in the domain of e-businesswith
the aim to integrate heterogeneous business processes, in informationretrieval systems,

digital libraries, and natural language processing.

2.1.2 Examples of Ontologies

Most of the researchers in the area of ontology development agree that two important
goals of ontology research are to make ontologies sharable by developing common
formalisms and tool, and to develop the content of ontologies [89]. Depending onthe

domain or the world an ontology models, the ontology can be put into three categories:

10

1. Knowledge representation ontologies (knowledge representation systems that
embody ontological frameworks), such as the frame ontology that captures the
representation primitives used in frame-based languages', or the Knowledge
Interchange Format (KIF) is a computer-oriented language designed for the
interchange of knowledge among disparate programs. It has declarative semantics
(i.e. the meaning of expressions in the representation can be understood without
apped to an interpreter for manipulating those expressions), islogicaly
comprehensive (i.e. it provides for the expression of arbitrary sentencesin the
first-order predicate calculus), and it provides for the definition of objects,
functions, and relations [13].

2. Ontologies about general world knowledge (upper level ontologies) such as
ontologies about time and space.

3. Domain specific ontologies, such as gene ontologiesand cancer ontologies.

Figure 1 illustrates how ontologies can be built upon one another in sharing and

reusing each other’s knowledge. Table 2 lists some well known ontologies.

1 A frame-based system has two parts: an ontology defining both the hierarchy of type definitions and the
relationships between the types, and a collection of instances, or instantiations of those types. Any concept
that is modeled by these types can have properties called slots. The slots can have values that are strings or
numbers, or even other types as defined in the ontology.

Tz olival ~\Pplication Domain
Ontologies: heart-

diseases

Domain Ontologies:

body

Generic Domain
Ontologies. components plan

General/Common Ontologies: Time, space, ...

surgery

Domain Task Ontologies. plan-

General/Common Task Ontologies:

11

y 4
Application Domain Task
Ontologies. heart surgery Usability

” I

y 4
&y
&

Representation Ontology: Frame-Ontology

Figure 1: Example of libraries of ontologies (modified from [55])

Table 2: Some well-known ontologies

Name Category Brief Description Developer
CyC Upper A genera ontology for WWW.CyC.com
level common sense knowledge
ontology to facilitate reasoning.
TOVE (Toronto | Domain For enterprise moddling, it | University of Toronto
Virtual Enterprise | ontology includes ontol ogies about Enterprise Integration
Project) activities, state, causality, Laboratory
time, resources, inventory, | www.ell.utoronto.ca
requirements order, and
parts.
UMLS (Unified Domain An ontology of medical www.nlm.nih.gov/research/umls
Medica ontology concepts.
Language
System)
WORDNET Domain Most well-developed WWW.COQSCI .princeton.edu/~wn
ontology lexical ontology.

2.2 Ontology Engineering

Ontology engineering is concerned with the principled design, modification,

application and evaluation of ontologies[70]. It encompasses a set of activities that are

conducted during conceptualization, design, implementation and deployment of

12

ontologies. It covers a range of topics such as ontology evaluation, development
methodology, knowledge sharing and reuse, knowledge management, business process
modeling, and information retrieval from the Internet [44].

Ontology development has passed the stage where it lacked standardized
methodologies, life cycle model and systematic approaches in its infancy stage. It is now
moving from its early craftsmanship development stage towards an engineering activity,
which has a set of well-defined criteria, techniques and tools [55]. This section takes a
closer examination of the various development approaches and methodol ogies adopted by

developersin practice.

2.2.3 Different Ontology Engineering Approaches

The following table outlines the five primary approaches to ontology design:

inspiration, induction, deduction, synthesis and collaboration approaches.

Table 3: Approachesto ontology design [70]

Approachesto ontology design

Approach Basisfor Design

Inspirational Individua viewpoint about the domain.

Inductive Specific case within the domain.

Deductive General principles about the domain.

Synthetic Set of existing ontologies, each of which provides a partial characterization

of the domain.

Collaborative |Multiple individuals viewpoints about the domain, possibly coupled with
an initial ontology as an anchor.

With an inspirational approach, a single developer takes the tasks of gathering
regquirements, performing the domain analysis, designing the ontology and verification of
the ontology. The developer must be a domain expert and an ontology design expert in

order to ensure the success of the design, and more importantly, to ensure the adoption of

13

the ontology in the user community. This process heavily depends on a single developer’s
creativity, inspiration and his or her persona perspective of the domain.

This approach is often applied in focused domains that can be well understood by a
chief designer, where the designer is able to dominate the design process and ensure the
adoption of the final product. However, when the knowledge in that domain startsto
expand rapidly and the complexity of the ontology starts to grow, the method will soon
become ineffective.

With an inductive approach, an ontology is developed by observing, examining, and
analyzing one or more specific cases in the domain of interest. The resulting ontological
characterization for a specific case is applied to other cases in the same domain [61]. The
degree of ontology commitment is largely decided by the generality of the cases chosen
during devel opment.

With a deductive approach, some general principles are adopted first and then tailored
and applied to the target domain. The resulting ontology can be viewed as an instance of
these general notions.

In the synthetic approach, a set of related ontologies is identified. The developer then
synthesizes the elements from these ontologies first together with the concepts in the new
target domain, produces a new unified ontology.

The fifth approach is the collaborative approach. The hallmark of a modern ontology
isits large size and high complexity; these ontol ogies encompass such arich set of
knowledge that its complete comprehension is beyond that of any single developer or
even asmall team of developers. The development of a large-scale ontology hasto be a

joint effort of many domain experts and software developersand the collaborative

14

approach for ontology development is the one best suited for the task as none of the first
four approaches address the impact of complexity of the ontology to the devel opment and
the issue of coordinating team efforts.
From the literature reviewed in the field of ontology engineering, we inferred a range
of strategies in identifying concepts. These are:
1. Bottomup: starting from the most specific concepts and then grouping them in
categories.
2. Top-down: identifying the most general concepts and creating categories at the
genera leve first.
3. Middle-out: starting from middie layer of most relevant concepts and then
growing the ontology in both directions.
Figure 2 illustrates one collaborative ontology engineering approach that uses the

Delphi method in its iterative improvement stage.

15

A collaborative approach to
ontology design.

Diafine design criteria |

Preparation Determine boundary conditions |

Dletermine exaluation standards |

Specily the initial ontology that
will s=ad the collaborative effort

Anchorimg

| denttify diverse panel of partin:ipant4

Elicit their critiques and
commefts an the ontalogy

[terative
Improwemeant

Revizs the ontology to address
parelists' feadack

[terate until consensus reached

¥

Application Demanstrate uses of the ontology

Figure2: A collaborative approach to ontology design

A practioner of the Delphi method described this method as [70]:

“[The Delphi method] is a formal technique for collecting and integrating the view of
multiple persons about some topic. Each participant independently provides views in
writing to a leader, who prepares a document reflecting the combined views as
feedback for the next round. In the second round, participants furnish their
independent written views in light of the feedback. In this way, the (development team)
leader attemptsto foster a convergence of views across successive rounds’ .

For a more comprehensive discussion of a case study for this approach, please refer to

[70].

16

Because this development process inevitably involves multiple developers and domain

experts, collaboration among these people for the purpose of reaching a convergence of

views becomes a decisive factor for the success of the resulting ontology. The

collaborating nature of ontology engineering becomes even more prominent in the

following discussion about the life cycle moddl.

2.2.4 LifeCycle Mode of an Ontology

The ontology life cycle model defines a set of stages that occur along the time line for

building an ontology, guidelines and principles to assist in the different stages, and

relationships and transitions among the stages. From the literature review, we synthesize

the development activities involved as the following:

1.

2.

3.

Planning

Gathering requirements and specification

Eliciting knowledge using knowledge elicitation techniques, knowledge
acquisition

Designing and building the conceptual model after acquiring enough domain
knowledge

Formalizing the conceptual model using aformal language, such as a frame-
oriented or description logic representation systems

Finding existing related ontologies and trying to reuse and integrate them into the
formalized conceptua model

Implementing the ontology with a formal language

Evaluating the ontology against ontology evaluation frameworks (example

presented in [92])

17

9. Documenting the design and the implementation
10. Maintenance of the ontology [79]

Thislist covers al the magor activities in modern ontology development. There exist
Some variations can be obtained by combining some categories or by further
decomposing a step into finer steps. This list merely is an enumeration of the activities
and does not impose any order on the execution of such activities. The life cycle model of
an ontology also decides the grand order of the activities and when to move from one
activity or state to another. Though we aways do the planning first and the maintenance
last, the activity of specification, knowledge acquisition, and conceptualizationare often
intertwined.

Inspired by the success of software development models, such as the waterfall model
[99], incremental model, and spiral model [35], ontology development researchers have
tried to incorporate these models into the ontology development process. M ethodol ogical
approaches that incorporate those models in building ontol ogies have been reported by
Uschold in the Enterprise Ontology project [105], Gruninger in the TOVE project, and
also in the domain of enterprise modeling [21]. Fernandez [79] has a detailed report on
his practice in mapping the above listed ontology building activities to the spiral model.
In these methodological approaches, developers borrow the lessons learned from the
software engineering practice and transfer them to ontology engineering. The following
paragraphs are a closer examination of the waterfall and spiral models as used in
ontology engineering.

The waterfall life cycle model, a popular software engineering methodology first

defined by Royce [99], has been transferred to knowledge engineering. Devel opment

18

organized according to this model is supposed to proceed linearly through the phases of
requirements analysis, design, and implementation, testing (validation), integration and
maintenance. The drawback of the waterfall model is the difficulty of accommodating
changes after the process is underway.

When applied in the ontology engineering field, this model requires the ontology
developers to identify all the terms at the beginning, and the implementation must be a
mirror of the specification; that is, it has to satisfy the complete requirements
specification [79]. When used by ontology engineers, this model faces the same problem
as it has in the software engineering domain; it fails to address the inevitable problem of
incompl ete requirements specification at the early stage of the development process, and
is not able to capture those requirements and specifications during the evolution of the
ontology over its life time.

The spiral modd [35], sometimes called the evolutionary life cycle, is borrowed from
the software engineering field to solve some of these problems. The basic idea of the
spiral model is to use the waterfall model in each step or development cycle as this helps
managge risks of incomplete specification in each step in light of the nature of ontology
development. The developers only define the highest priority featuresin every iteration.
Feedback from ontology users s collected after those features are implemented and
released. With this knowledge, developers then go back to define and implement more

features in iterative steps (Figure 3).

19

&
Cumalatee
casl
l,_._—._.‘

Progress

thircgh

steps

. - 1 Evalualy allernalivay,
Detarmine identity, rasohe risks
objectivas,
i) ___——______‘\
constraints Risk
Risk analysis

analysis

Risk
analysis

Fisk

Commitmant
partiticn

Raview

T
Asquiremanis pl.an
lilo ayole plan

Soltware
product
dasign T

Haguiramenis
walldation

|
Imagraticn: . .
and tast E:;'E;r;.ﬂ_'ﬂ_"?m" Iﬂtirgra:iml
pitan — | aind es
——

Implemantation] Accaptance|
|rn st

Plan naxi phases | |

Devalap, warly
nexl-lpenl produc

Figure 3: Spiral model of software development [35]

When applied in the ontology engineering field, each cycle of the spiral begins with
the identification of:
1. the objectives of the portion of the ontology being elaborated (concepts,
definitions, relationships, and the conceptual model)
2. the aternative means of implementing this portion of the ontology with aformal
language
3. the constraints imposed on the application of the aternatives (cost, schedule) [35]
The next step after identification is to evaluate the aternatives relative to the

objectives and constraints; this may involve prototyping and analytic modeling. Once one

20

of the alternatives is chosen, the process continues with the development of a more
detailed prototype and the final implementation of this portion of the ontology.

The primary advantage of the spira model is that it facilitates the process of including
or excluding new definitions at any stage of the development.

Many ontologies have been built by learning and borrowing from software
development process models. Appendix A contains a partia list of them. For detailed

information on each one of the projects listed, please refer to [77].

2.3 Summary

By investigating the common practices/methodol ogies in creating ontologies and the
life cycle model of an ontology, we can conclude that ontology development is
increasingly collaborative.

In order to explore tool support for collaborative ontology engineering, we look at
Computer Supported Cooperative Work (CSCW) in the next chapter, and further
investigate how technologies from the CSCW field are used in ontology engineering

practices.

21

Chapter 3 Computer Supported Collaborative Wor k

CSCW stands for Computer Supported Collaborative Work (CSCW); itisa
multidisciplinary research field encompassing computer science, artificial intelligence,
sociology, and psychology. CSCW involves studies about tools and techniques of
groupware as well as their psychological, social and organizational effects. It is ageneric
term that combines the understanding of the way people work in groups with the enabling
technologies of computer networking and the associated hardware, software, services and
techniques [20].

The term groupware is often seen side by side with CSCW in computer science
literature. Ellis [45] defines groupware as "computer-based systems that support groups
of people engaged in a common task (or goal) and that provide an interface to a shared
environment.” The notion of groupware is the computer-based support of work groups or
project teams. Support may mean support by special software or hardware, by
information and communication services as well as support of group work, in contrast to
individual data processing.

While groupware refers to real computer-based systems, CSCW is the study of tools
and techniques of groupware as well as their psychological, social and organizational
effects[4]. In other words, the term ‘groupware’ usually refers to tool implementations
whereas CSCW looks at everything that impacts groupware.

For fast and distributed development of ontologies, the development team often needs

and uses collaborative technology support, which falls into the domain of CSCW. This

22

chapter briefly reviews the history of the CSCW domain and its state of the art

technologies.

3.1 Overview of Groupware

In 1968, Doug Engelbart and other researchers from the Augmentation Research
Center at Stanford Research Institute in Menlo Park, CA demonstrated the NL S/Augment
system [46] that debuted the mouse and other innovations including shared-screen
collaboration involving two persons at different sites communicating over a network
with audio and video interface. It inaugurated the development of modern groupware
such as real-time shared editing of documents, text messaging and audio and video-
conferencing.

CSCW and groupware emerged in the 1980s as a research field from shared interests
among product developers and researchersin different areas. It started as an effort by
technologists to learn from economists, social psychologists, organizational theorists,
educators, and anyone else who could shed light on group activity [58]. Many groupware
applications have since been developed and used in the 1990s and have advanced further
in recent years with the rapid growth of the Internet and the World Wide Web [33].

A conventional categorization of CSCW systems according to a time/location matrix
isshown in Table 4 [74] and Table 5 [59].

From the literature reviews, we find that, in general, the cooperative support provided
by CSCW system or groupware can be categorized as following:

» Data storage (e.g. file sharing system, CVS)
= Synchronous and asynchronous communication (e.g. email, video/audio

conferencing, instant messaging, Web bulletin board, Web log, group chat)

23

= QOrganization of the work (workflow systems, collaborative editing/graphing
applications, group decision support systems)
= Advanced groupware that integrates severa of the above functions

Groupware functions in a heterogeneous world where different media, storage systems,
and planned or impromptu collaboration are used. Inthe real world, a variety of tools and
techniques are often used to get ajob done. A single groupware product that adequately
covers all aspects of cooperationdoes not exist and may never exist[36].

The typology in Table 4 and 5 help us identify groupware applications that pose
common technical challenge. Developers do not necessarily map the tool to be developed
rigorously to this time and space categorization, because tasks and activities do not
always match this table bel ow precisely [58]. For instance, Table 4 does not show that
some of these activities overlap each other. Email can be used in same place / same time
situation very effectively—for example when you need to talk to someone privately while
you are in the same room but others are present, sending an email to this person may be a
good solution.

Our daily work often involves some face to face meetings, some distributed
synchronous and asynchronous communications, and some coordination. To provide
adequate collaboration support for one task usually requires a set of tools.

Key functions of groupware are group awareness, multi- user interfaces, concurrency
control, communication and coordination within the group, shared information space and
the support of a heterogeneous, open environment which integrates existing single-user

applications [4].

Space

Table4: Classification of CSCW Systems

24

Sametime

Different times

Same place

Face-to-face (classrooms,
Meeting rooms)

Asynchronous interaction (project
scheduling, coordination tools)

Different places

Synchronous distributed
(shared editors, video
windows)

Asynchronous distributed (email,
bulletin boards, conferences)

Table5: Fine grained categorization of groupware

Same

Different but
Predictable

Different but
Unpredictable

Same

Meeting facilitation
Tele/Video Conferencing

Interactive multicast
seminars

Time ——
Different but Different but
Predictable Unpredictable
Work Shifts Team rooms
Electronic mail Collaborative
Writing

Web bulletin boards Workflow

Groupware applications have already infiltrated our office and home. Instant

messaging systems such as MSN messenger, Y ahoo messenger and AOL instant

messaging have been widely used for informal communication both at work and home.

With application sharing (e.g. co-authoring and shared writing tools, group calendar), a

group of users simultaneously interacts with one or more prog-ams and they all can see

and share the results. Microsoft Windows Remote A ssistance application even allows

sharing al the applications on your computer with another user over the network. The

World Wide Web, initially designed as a passive medium, has also beenextended with

facilities to support cooperation36]; Web-based bulletin boards, shared web calendars,

web project planning and management systems have been used to support team

awareness in business and academic settings.

Aswell as the technological advances made in groupware development, the non

technical aspects, such as social, psychological, and economical, are equally important.

25

David Coleman has this interesting account in his book “Collaborative Strategies for
Corporate LANs and Intranets’ [42]:

“ ... When addressing technical challenges, a technical solution must be found.
However, even if the technology solves the problem, works well, and isrolled out
efficiently, support from the corporate culture is essential to the implementation’s success.
Further, even if the culture supports the groupwar e success, but there is no economic
justification for a groupwar e solution, the implementation will fail. Finally, even if
technology, culture, and economics combine to support groupware, the success of a
project can be destroyed by politics.”

Taking all the factors into consideration, Coleman expresses the success of any
groupware application by the equation:

Groupware Success = Technology + Culture + Economics + Politics

The further to the right a factor is in this equation, the greater its potential impact on
the success of the project [42]. Coleman again reminds us of the importance of human
and social factors in any groupware implementation and deployment.

Though success and failure of a groupware application cannot be reliably predicted
[60]. Overal, development of groupware requires a good understanding of the working
environments and the social, political and motivational factors in the work place.

From this point of view, the willingness of the individual tool users, the project team,
and even the entire organization, to participate and to use the groupware is critical to the

acceptance of the toal. In the next chapter, we will begin by taking a closer look at the

existing groupware support in some of the more widely used ontology development tools.

26

Chapter 4 Survey of CSCW Support for Ontology

Development Tools

Building ontologies in a collaborative environment has been an ongoing research topic.
There are a number of tools for ontology development. In order to search for innovative
ways to complement the collaborative support in the existing tools, it is important to
study the existing approaches, and examine the weaknesses and strengths of each of them
in providing collaborative support. The five tools presented here are all comprehensive
ontology development environments and are widely used in the ontology development
community. Ontolingua Server, OntoEdit and APECKS are tools built on aclient-server
architecture with different approaches in supporting collaboration. Protégé-2000 is a
platform-independent tool widely used in the clinical and medical domain for creating
and editing ontologies. It started with functions supporting solo development and is
evolving towards supporting collaborative group works. For purpose of our research we

will mainly focus our discussion on the collaborative aspects of the tools.

4.1 Ontolingua Server

Developed by the Knowledge Systems Laboratory at Stanford University, the
Ontolingua Server is a set of tools and services used to support the process of achieving
consensus on common shared ontologies by geographically distributed groups. These
tools make use of the World Wide Web to enable wide access and provide users with the

ability to publish, browse, create, and edit ontologies stored on an ontology server [53].

27

These tools and services aim to promote the use of ontologies across the user community
and knowledge- level agent interaction.

Figure 4 shows the architecture of the Ontolingua Server. The left hand box depicts
the general purpose Ontolingua editor and server. I n order to support ontology reuse, the
server hosts a central library of ontologies, and provides developers controlled access to
this library. The server supports the assembly, customization, and extension of ontologies

from this library of ontologies.

fi-{-:nmlc collaborators

Readers

-

Ontology Editor/Server

Translators: _[}-m
_ Loom, IDL, CLIPS, ... k y,

Frozl=5-2]

.

/" Stand-alone Applications f\
[e.z. C.Net. Facilities] 0
M
Batch file L
transfer
|
——— n
KB t
- —

Figure4: Architecture of the Ontolingua Server ([53])
This Ontolingua Server technology supports three modes of use:
1. Distributed groups may browse and retrieve ontologies from repositories using

aWeb browser. Users can also use the Ontolingua language to build and

28

maintain ontologies stored on the server. The Ontoligua language is based on
the Knowledge Interchange Format [53].

2. Remote applications may query and modify ontologies stored on the server
over the Internet using a network API that extends the Generic Frame Protocol
[94].

3. Userscan trandate an ontology into aformat used by a specific application.
For example, an Interface Definition Language (IDL) translation can produce
an IDL header file that a CORBA compliant program can use to interact with
an object request broker.

The three boxes on the right side of the Fig. 4 indicate these primary use modes.

Support for distributed and collaborative devel opment of consensus ontologiesis
provided through the web interface by means of user and group access control and multi-
user sessions. Locking mechanisms and analysis of alternative definitions from multiple
authors facilitates the concurrent access to a shared ontology. The devel opers of the
Ontolingua Server provide a detailed explanation [53] on this matter:

The Ontolingua Server uses a notion of users and groups that is typical in most multi
user file systems. Aswith file systems, read and write access to ontologies is controlled
by the ontology owner giving access to specific groups. This mechanism supports both
access protection as well as collaboration across groups of people who are defined
within the ontology devel opment environment.

The server provides support for simultaneous work through group sessions. When a
user opens a session, she may assign a group ownership to it. This enables any other
members of that group to join the session and work simultaneously on the same set of
ontologies. A notification mechanism informs each user of the changes that other users
have made. Notifications are hyperlinked to the changed definitions and describe
changes in terms of basic operations such as add, delete, and modify (e.g., “ Farquhar
added the slot motor-of to the class vehicle”). The synchronous nature of the web

protocols makes this sort of notification somewhat clumsy —the Server cannot notify
users that a change has occurred until they visit a new page.

29

Researchers also found that merging ontology is critical in coordinating collaborative
development for both co- located and geographically distributed teams [83]. Chimaera [83]
is an optional web-based ontology merging and diagnostic tool used by Ontolingua
Server. Chimaera allows users to choose the level of rigor before merging and suggests a

list of potential merging candidates based on this rigorous level.

4.2 OntoEdit

OntoEdit [15, 102] is a collaborative ontology editor for the Semantic Web. It is
available in freeware and professional versions. The professiona version typically
includes an additional set of plug-ins, e.g. plug-ins that provide the collaborative
environment and the inferencing capabilities. OntoEdit is a methodol ogy-based ontol ogy
construction tool that supports an iterative development process with three phases: a
requirement specification phase, arefinement phase, and evaluation phase. The
professional version has two plug-ins to support collaboration: OntoKick and Mind20nto.

OntoKick supports the collaborative generation of requirements specifications for
ontologies. The collaborative aspect of Ontokick is not so much support for distributed
work of team members, but rather support for personal interaction of ontology engineers
and domain experts [16]. OntoKick allows ontology engineers to specify important meta-
aspects of the ontology, and it supports the creation of a semi-formal ontology description
in the requirements specification phase.

Mind20nto integrates the commercial tool MindManager'™ into the development
process. MindManager supports collaborative engineering of mind map through peer-to-
peer communication, and it presents the hierarchical mind maps in graphical format.

OntoEdit uses MindManager to facilitate brainstorming and discussion sessions about

30

building ontology structures, while OntoEdit imports the mind map in XML format and
covertsit to a semi-formal description of an ontology. It also supports collaborative
editing of mind map through peer-to-peer communication [102]. The peer-to-peer
communication of the mind map tool provided the necessary workgroup functionalities.
Individual developers and workgroups on the peer-to-peer network can easily participate
in ajoint session in creating a mind map.

The goa of OntoEdit in the refinement phase is to turn the semi-formal description of
the ontology according to the captured requirements into a mature ontology. OntoEdit
uses a client-server architecture as shown in Fig. 5. The server will send out notifications
to all the connected clients when there is any modification made to the ontology.
Ontology engineers store and share their comments; for example, the design rationalesin
the documentation fields for each concept and relation.

The OntoEdit ontology server employs a very fine-grained locking mechanism and
transaction management system to coordinate the concurrent accesses and modificatiors
to the shared ontology to ensure a safe and consistent ontology development environment.
Developers have options ranging from locking concepts, instances, and relationships to
locking a complete subtree of the concept hierarchy. To guarantee consistency and to
avoid deadlock situations, OntoEdit forces clients to obtain locksto al the needed
resources pertaining to the object to be locked. For example, locking a concept X implies
read-lock for all super-concepts of X and al their super-concepts. A read-lock marks a
resource as being read-only; that is, modifications to it are disallowed. If aread-lock for
at least one super-concept cannot be achieved, the concept X cannot be locked and the

transaction fails [102].

31

Cllent 3

Client 2 | | cllent 4
i

Local .-'i—_-h-l_ul_J |

lad img trferm stion [

. -

. o e
= “rr:r'lrl-:'l:, O/ LK}'-;) (:i':- {1..»‘ (- :’E&%(D

{ﬁ_; ﬁ C‘ &) ’

cilieu!._L _ ‘ ‘]
|

= Locking Informatan

t #_ﬁf'%%\r_‘] <« /9\0 ‘
| «,_a} ’)____,f {F\j ’ ontology Datamodel

(O

e

ontolegy Server

Figure5: Client/Server architecture of OntoEdit ([102])

43 APECKS

The Adaptive Presentation Environment for Collaborative Knowledge Structuring
(APECKYS) system was devel oped by the Department of Psychology at the University of
Nottingham. It is an ontology server supporting collaboration by allowing domain experts
to create ontol ogies based on their own perspective. APECK S allows users to compare
their perspective to another perspectives (prototype, design rational, etc) to prompt
discussion about the sources of their differences and similarities. The developer of
APECKS believes that ontologies should develop in the form of “living ontologies’, and
as suchthe tool for the development should support collaboration among their creators
through structured and unstructured communication. APECK S tries to enable expertsto

address the sources of their disagreements and to argue with a productive end. The

32

emphasis within APECKS is not on the outcome it produces, but rather the process. the
disagreements and discussion that are involved in creating a consensual ontology [73].

The APECKS ontology servers are designed to let a number of users create an
ontology together and communication among these developersis supported by the
following mechanisms [73]:

Subscription: users subscribe to certain areas of interest within a knowledge
representation. They are then notified of any changes that occur to those aress.
Annotation: users’ annotations can be recorded and attached to any concepts or
instances for cross-references.

Group sessions: users subscribed and working in the same group session can
receive synchronized notification when changes are made by other users within
the session.

Synchronous communication: collaborators can send short messages to each other,
including images and ontology files.

APECKS supports unstructured synchronous communication and unstructured
asynchronous communication by allowing free annotation of objects in the system, and
by preserving annotations and establishing referential links between annotations and
objects. It supports structured communication by:

1. Using the questions, options and criteria (QOC) methodology. For adesign
guestion, it uses a questionnaire to poll each user’s answers in order to make the
decision. It also recognizes that structure communication often limits the
expressiveness of discussion and can be subverted by users to enable them to

make their point, which detracts from its utility [73].

33

2. Allowing users to compare their ontology from time to time in terms of the
consensus, conflict, correspondence, and contrast classification. Users of
APECKS are prompted to take actions or communicate with each other on the
basis of the comparisons. The process results in further discovery of domain
related details, and many criteria used in the construction of ontologies are made
explicit. One such scenario is documented in [73]:

If one ontology classifies rocks in terms of their 'quartz content' while another
does so in exactly the same way, but uses the term 'silica content’, APECKSwould
recognize this as a state of correspondence (different terminology being used for
the same concept). The users who constructed these ontologies would be
prompted to either change the termto bring them into line with the other or to
start a discussion about why different terms were being used.

APECKS is geared towards two overlapping but distinct groups of people: knowledge
engineers who have the expertise of constructing ontologies and domain experts who
have the domain knowledge. The knowledge engineer's task is to construct consensual
ontologies from the knowledge of a number of experts. This leads to the type of assertion

[98] that ontologies, by definition, represent consensual knowledge, the single accepted

definitions of technical terms used within the domain.

44 CO,4System and CO,4 Protocol

The Collaborative Construction of Consensual Knowledge (CO,) system[49, 52] is
designed for the incremental and concurrent building of a knowledge base. This system is
first developed and used in the domain of molecular genetics. The CO, protocol and the
implementation of the CO, system supports collaborative construction of a formal
knowledge base, and it alows collaborators to freely annotate, express and manipulate

their knowledge with hypertext, images, and experimental data [50]. It usesaWeb

34

browser as its presentation medium. It specifically addresses the problem of consensus of
the knowledge base with the help of the CO4 protocol for integrating knowledge through
several levels of consensua knowledge bases. Capturing corporate memory through
cooperative creation of knowledge bases and hyper-documents is the motivation behind
the CO4 system

The principles underlying the CO4 protocol are derived from the peer-reviewing
protocol [95]: before being committed into a consensual knowledge base, the knowledge
must be submitted, reviewed and accepted by the community [50]. It is intended to ensure
that at the end of the development process, knowledge stored in the knowledge base is
safe enough so that anybody can accept it and use it confidently and easily. Informal
knowledge is also subject to submissions, reviewing and so on. The CO, system uses a
peer-reviewing protocol in knowledge base devel opment.

The designer of the CO, system discovered that simply using a “computer as [a]
medium” for stating, editing and storing knowledge bases is not enough [50], it does not
promote communication among its individual participants or devel opers.

The motivations behind the design of this system lie in three aspects:

1. Knowledge must be stated as formally as possible. Formalizing knowledge has the
advantage of capturing the semantics, creating a standard ontology and allows the
software agents to manipulate the knowledge, do intelligent reasoning and
searching.

2. Not everything can be formalized, and even if everything is formalized, the formal
system can still suffer from problems such as complexity and incompleteness [50].

Thus, the formal knowledge must be supported with rich documentation,

35

annotations, images, animations and even video/audio material. Formal knowledge,
knowledge that has not yet reached a formal state, and knowledge that cannot be
formalized are well supported by the informal forms of knowledge.

3. People must be supported in discussing the knowledge introduced in the
knowledge base. In this perspective, creating, re-using, modifying and maintaining
knowledge should be a participatory activity of all the involved people (providers
and users) [49, 50]. Supporting discussion and consensus building ensures the
consistency and coherence of the produced knowledge base, and its acceptance

and usefulness in the user community.

4.4.1 TheCO4Knowledge Base Network

Figure 6 illustrates the hierarchical structure of the CO,4 knowledge base network.

Each collaborator plays abase role in the system. Bases are organized into atree
structure whose leaves are user bases and whose intermediate nodes are group bases;
each group base represents the knowledge consensual among its children, the subscriber
bases [50]. Group bases can be further grouped together to some higher lever groups until
it reaches the top of the tree. This network of collaboration can be imposed on the
structure of a particular organization or that of a group/department in the organization

[49].

36

Subscriber knowledge bases

——— ——

OO e o) |
\\:/ _
e T te e
———
) o [

Group knowledge base
Figure6: Hierarchical knowledge base network and message flow (dark arrows). Bases are

organized in a tree whose leaves are individual bases and nodes[50].

Each group base acts as a rendezvous point for its subscriber bases to submit its
knowledges, critique and comment on each other’s submission, explore alternatives,
revise the changes and eventually reach consensus. The dark arrow in Figure 6 represents
the flow of message from one base to another. A group base broadcasts messages for a
change accepted by everyone, or calls for comments in order to establish whether a
change should be committed or not. Similarly, a base (group base or individual) sends to
its group base changes or new knowledge it wants the group base to integrate. A human
user can subscribe to different group bases, and knowledge can be transferred from one
base to another. Several human users can share the same base. Group bases have the
same structure as the subscriber bases as they are the same pieces of software; however,
the group base is automated to respond to stimuli from its subscribers or higher-level
bases.

Each group knowledge base is implemented on top of aweb server. Object references

in the knowledge base are transformed into URLSs. The mixing of hypermedia with the

37

knowledge base makes the knowledge base accessible through a web browser, and the

hypermedia provides navigation assistance for the users of the knowledge base.

Routing / transaction lr-m-ap.-rl

[||'-d‘.*'c & N._u.,.“ 1o I||.||ﬂ"\.|q..||.||.'|-|
Fevision controller controller
controller

Figure 7: The softwar e ar chitecture of CO,4 system. Boxes represent a software module, Circled units

lorage,
formal and
non-torma,

are data’knowledge repositories and arrows represent the call of program functionality [50]

Figure 7 illustrates the software architecture of the CO,4 system. The communication
layer handles routing and transport of messages among subscribed groups. Other the
components in the system include the:
knowledge base storage component
update and revision controller that manages and aralyzes the stored knowledge
base, detects inconsistencies and suggest possible repairs
negotiation controller that interacts with the peer collaborators by broadcasting
messages such as call for comments, and possible repairs and alternatives to the
knowledge base. It also handles queries submitted by other collaborators
cooperation controller is alibrary of functions that implements the CO4 protocol
base definition defines the connection among peer bases
The primary goal of COy isto construct a consensual knowledge base. It achieves this
goa by combining the hypermedia navigational assistance in alarge information space

with the collaboration protocol. Its implementation details can be found in [51].

38

45 Protégé-2000

Developed by Stanford Medical Informatics at the Stanford University School of
Medicine, Protégé-2000 is an extensible, platform independent software tool for creating
and editing ontologies and knowledge bases. It allows domain experts and ontology
developers to create and modify reusable domain ontologies, customize knowledge-
acquisition forms, and enter domain knowledge [88]. Its plug-in architecture allows
developers to add customized components to provide new functionality, such as
customized graphical widgets for tables, and diagrams and animation components to
access other knowledge based systems. It also has a set of libraries that can be used by
other applications to access and display knowledge bases [18]. Protégé-2000 is currently
being used in clinical medicine and the biomedical sciences, but it can also be used in any
field where the concepts can be modeled by a frame-based system. A knowledge base in
aframe-based system is built around the notion of frames or classes which represent
collections of instances, and a hierarchy of type definitions and the relationships between
the types. Each frame has an associated collection of slots or attributes which can be
filled by values or other frames. In particular, frames can have a kind-of dot which
allows the assertion of the frame taxonomy. This hierarchy can then be used for
inheritance of dots. Aswell as frames representing concepts, a frame-based
representation may also contain instance frames, which represent particular instances.

The beta version of the multi- user version of Protégé-2000 is available for testing at
the time of this writing. In this version, the ontology under development is stored in a
shared database where multiple users can read the same database and make incremental

changes or changes that do not conflict with one another. Protégé-2000 uses the Open

39

Knowledge-Base Connectivity protocol (OKBC) as its common query and construction
interface for its frame-based knowledge representation system in order to achieve
interoperability with other knowledge representation systems. Consequently, Protégé-
2000 users can import ontologies from and export to other OKBC-compatible tools. It
also complies with the new OWL (Web Ontology Language) knowledge model, which is
developed by the World-Wide Web consortium and is emerging as the stardard for
defining metadata for encoding machine-readable semantics on the Web. Protégé-2000
can trandate an RDF knowledge base created in Protégé-2000 into standard RDF syntax;
effectively making Protégé-2000 an editor for RDF documents [90], adding on another
degree of interoperability to this tool.

Figure 8 shows the ontol ogy-editing environment in Protégé-2000. The left-hand
panel contains the class hierarchy. The left-most pane in Figure 8 shows the class
hierarchy with multiple inheritances; the hierarchy can be re-arranged by dragging and
dropping. The right side of the pane shows the detailed information for the selected class
The details include the dots for the class, their values, the template slots attached to the
class, and the value restrictions. The small window shows the form for editing an instance

of the selected class.

F gt (et e 2000 (01 e i s Pt g S0 10, piiiibes svemadspat e s i 1) alo] wd
L
|E-‘.F§"E! 2E
N T T T TR TR
et nesin susetvise = W [€ m‘:-f| . diin el
[= By Biocarmenisin st TR
- 1 :Eﬂlb | Edtime amannpoibe g the 17wkt mq:lu:.rm—mmrmmh:l
- homdrad £ aqinerl o garlnne
o - |
s _' FETRENTA Rale
B 1 TR A |'-"E'E'!—_‘:| L=t =g+ 1]
. umnan . -
{E Dabarrei™ Templain Sl J' JL]: M. kl
S I . .
Sy [p—— [T ome Facets.
: Num__ﬁn'-:- 5 e pang AIE_ 1 INEEaNE G s g Emph vEE|
s AR B! anctin IEgangs s Hlaga=isaeion)
= l:,Lu_r:enl A Bgum’-m- g Enigh
$i .;_"’Ffts'"'"" 5] cur ot o i =mng aniis
b i 5 aale_nneil iy e
. S B s ﬁé*ullﬂ' Fiesd B
N nrrlmu A S_.mn.u Siilig smgle
¥ "C-'I_-g!u'*-"m | alner il Shing whigle
L Baling_CHt (5] phone_rumir =g emngls
-':-_:E!Jl".'??lll_Llol.llll =
= T alih
— = e EI]
Eupervicsann w| =] N Dot e - &
| = it | [E.[[Q.. Tllirs W ETnUIE Tt | [3 el ek o Sy it
|'= Esgan S et O peion
| |
VNE[xT+]
T 1 ooy | ma_ma_ﬂ
Ingtwiis rdliia cianaegsiE s |
inglania frdlinle Chana 5 0 e B i 1]
2rmy =ingi
2rmy =inpie
“Bimij =ingle |_
l'-||_|_.»_r! Anpe !j bt

Figure8: Editing classes, slots, and instances with Protégé-2000

40

Protégé-2000 aso has an advanced visualization and navigation engine which we will

discussin detail in Chapter 7. This plug-in provides not only the ability to visualize many

ontology concepts in ways that are easier to understand, but it also gives the users arich

set of controls with which users can interact with the data with greater freedom.

4.6 A Comparison of Ontology Editing Tools

Both Ontolingua Server and OntoEdit adopt a server-client infrastructure to support

concurrent and distributed collaboration.

OntoEdit uses a locking and transaction protocol and implemente a distributed event

model on the basis of Java remote method invocation to provide consistency and

concurrency.

41

Ontolingua Server uses the HTTP protocol to propagate change notifications to the
clients; but because of the asynchronous nature of HT TP, this notification mechanism
does not satisfy the synchronous collaboration criteriawell. Using the ubiquitous Web
browser as the interactive medium for browsing and editing ontologies on the Ontolingua
Server attracts alarge user community because it improves the rate of user acceptance,
and avoids many of the pitfalls of software distribution [98]. However, the Web-based
interface in Ontolingua also imposes a set of constraints on the user interface, such as the
responsiveness of the application.

The fine-tuned locking mechanism, transaction management and inference support in
OntoEdit make it stand out among many collaborative tools. However, using locking to
coordinate collaboration aso creates some problems when there is a large development
team. The locking method uses a mutual exclusive algorithm, which has long been used
in operating systems, to coordinate multiple processes running simultaneoudly. In the
case of the operating system, the daemon scheduler running in the background does all
the coordinated scheduling to achieve maximum resource utilization, load balance,
fairness of time sharing, etc, among processes. In the case of OntoEdit, each task a
developer isworking on is treated as a running process which are suspended and
resumed according to the availability of resources (concepts, instances, ontology
hierarchical subtree). The scheduling process among the ontology engineers and domain
expertsis realized through communication such as email, phone calls, face-to-face
collaboration, instant messaging, and even corridor talks. It is not a process that can be

completely automated to achieve maximum resource usage. Better collaborative support

42

that facilitates both formal and the ad- hoc nature of communication among developersis
needed in this case to support coordination.

The APECKS Ontology Server developers identified communication among ontology
developers as an important task and tried to provide explicit support for it. The APECKS
designers found that more communication between the builders of ontologies will allow
deeper discussion of a domain, leading to both richer ontologies and design rationales

that can be reviewed and used to inform the construction of future ontologies [73].

For Ontolingua Server and APECK'S, the communication and collaboration support
are both built as extensions of HTTP servers, and they present to the users a frame-based
view of the ontology in the web browser. In APECKS, any user can define multiple
ontol ogies within a single domain, representing different aspects of the domain or
different tasks that might be carried out within it [73]. Individual ontologies are shared in
a different manner from Ontolingua shared sessions; these are shared in a similar manner
to the knowledge bases in CO, discussed in the following section, which are based on
group sharing and peer-reviewing.

APECKS uses the frame-based knowledge representation schema. The trand ation
between the APECKS representation system and that in other frame representation
systems can be facilitated by Ontolingua Server and the Generic Frame Protocol [73].
This makes APECK S able to access network-accessible Ontolingua ontologies and can
incorporate them into the APECKS ontology representation.

APECKS foresees the use of distributed networked-resources on an individual
developer’ s workspace. It is envisioned as acting as a client as well as a server, accessing

network-accessi ble knowledge acquisition applications and other ontology systems [73].

43

The CO,4 system emphasizes collaboration and consensus building among devel opers;
Protégé-2000 emphasizes ontology reuse and interoperability among different tools. The
CO,4 system particularly pays attention to the acquisition of informal knowledge, and uses
it effectively as annotation materials to the formal knowledge, and as communication
assistant materials among users.

The ability to present and let the user interact with the ontology effectively is of key
importance to atool’s usability. Ontology models usually support multiple inheritance in
the concept hierarchies and relation hierarchies; the standard approach is the use of
multiple or nested tree views with the ability to expand and contract hierarchical levels
[26]. Using web browsers and hypermedia for presentation, navigation and user
interaction certainly makes CO,4 easy to learn and use, but it remains to be a challenge for
the web browser to present complex hierarchical information. Protégé' s visualization
plug-in provides various levels of abstraction on the complex ontology structure through
afully zoomable user interface making the user interaction more intuitive, enhancing

understanding and allow easier exploration [78].

4.7 Summary

Five ontology development tools widely used by the ontology and semantic web
community have been reviewed. Collaborative ontology development, consensus
building in the devel opment process, interoperability, and reusability are the primary
themes common throughout tools. Each of these five ontology and knowledge base
development tools has its strength in one or two of these aspects, and weakness in others.

Part of the reason for this diversity is that each tool stemmed from a different domain and

each of them istailored for a particular ontology design methodology, or a specific
development process model.

The insufficiencies in these tools with regard to collaboration support are:
Coordinated group work, such as collaborative editing, discussion or annotation is
not well supported, mainly because the systems lack the functions for keeping
developers informed of each other’ s tasks and activities.

Contextual communication support is not considered in these tools, forcing users
to rely on general purpose tools, like email applications, to communicate with
each other. Email is good for formal or semi-formal communications, but
considering that in many cases users have to fumble through emails and establish
links between the email correspondents and the devel opment environment, emall
is by far not the best choice. Documentation reflecting a coherent discussion is
inevitably scattered in many people’ s mailboxes. In theory we could join al these
documents/views to reconstruct the complete transcript and to get an entire
picture of the topic. In practice, however, nobody has the time, skill, or motivation

to stitch the whole quilt together [104].

45

Chapter 5 Dimensions of the Problemsin Collaborative

Ontology Development

With each successive deployment of networked application our world is becoming
ever more connected. Since Ray Tomlinson developed the first email application for the
ARPANET in 1971, various forms of communications have arisen, such as voice mail,
instant messaging, cellular phones. This has even led to the claim that distance is
becoming irrelevant [37] in our work and lives.

It istrue that | nternet and communication technologies connect us and enable usto
communicate in many incredible ways; nevertheless, we gill have problems determining
how to effectively set up a globally distributed team and organize around-the-clock
software development project. With problems likes these, we are still left with good
reason to be skeptical about the aforementioned claim.

Distances were first introduced into software engineering because of the globalization
of the software market, the growing practice of software outsourcing, and the need for
lower cost and to gain access to skilled resources [66]. In order to take advantage of these
distributed resources, the software industry began to decompose the software
development activities and resources, and arrange them into geographically distributed
locations. Many software devel opment projects have become globally distributed
coordinated tasks. Global Software Development (GSD) studies the effect of this
software development practice, the complexities, and new variables introduced into

software development, such as distance, communication, cultural issues, management

46

issues, etc., while aiming to help improve the efficiency of distributed development and
the quality of the software products. Researchersin GSD and the telecommunications
engineering domain have found that communication, especially informal and unplanned
communication, is extremely important in supporting collaborative work [96] [67].

With the increasing recognition of the importance of ontologies and the amount of
development and usage of ontologies in business, distributed ontology development is
inevitably going to face challenges similar to GSD.

Developing an ontology in multiple sites is still arelatively unexplored territory. In
some cases, the insurmountable hurdle created by distance has forced the devel opment
work to be done in one central site, at the expense of losing the ability of leveraging the
knowledge and expertise of other peer expertsin remote sites.

Drawing from the lessons and experiences from the GSD field, this chapter explores
how the difficulty of collaborative ontology development manifests itself in three
dimensions: distance and communication, documentation and knowledge management,

change tracking and version control.

5.1 Distance and Communication

Collaboration over distance must face the loss of the rich, subtle interactions that co-
located teams use to coordinate their work. Research in distributed software engineering
suggests that working across sites introduces substantial delays to the development cycle
because of reduced communication, difficulty in finding the right person and establishing
contact, as well as not having an effective collaborative session [69].

For teams with all the members working in a collocated work space, the informal ad

hoc communications can happen anytime during the work day (in the corridor or beside

47

the coffee machine, for example) and team members take advantage of thisall the time.
Because it is seamlessly blended into the work processes, the effects of informal
communication are often overlooked, and we tend to neglect its significance. However, in
a geographically distributed team, the chances for team members to have informal
communications are reduced sharply, and the team loses the benefits of it. A study at
Carnegie Mellon University showed that the rate at which scientists collaborated
spontaneously with one another was a function of distance between offices [75]. Similar
results were also found among engineers. When engineers' offices were about 30 meters
or more apart, the frequency of communication would drop to nearly the same low level
as people with offices separated by many miles[29].

Mesetings are one kind of formalized communication; however, communication need
not always occur within aformal, hierarchical communication. When a distributed team
collaborates, informal channels of coordination are critical since they help developers fill
in the details in the work, handle exceptions and correct mistakes [68]. Empirical studies
suggest that software developers aso rely heavily on informal and unplanned
communication [67]. Informa communication has a direct impact on the devel opment
process. For example, the news of a requirement change can propagate and reach each
team member much more quickly than going through the formal mechanisms of
communication, such as specification documents. This phenomenon potentially makes
workers react more quickly to changes and consequently shorters the development period.

During a quantitative study at Bell Labs[65], scientists studied two software
development teams, one in collocated and the other in distributed environment. They

measured and compared the length of delay for both teams to respond to and implement a

48

modification request, which is a request to incorporate a specific functionality into the
software. The results show that the average distributed team took about 2.5 times longer
to complete the task than the collocated team. A similar study was done to measure the
length of delay for developers to get needed information from co-workers; the result is
that there is no significant difference in the number of delays reported, but the delaysin
the distributed team took almost a day and half longer than a collocated team.

Coordination is the act of integrating each task with each organizational unit, so each
unit contributes to the overall objective; orchestrating this integration often requires
intense and ongoing communication [38]. Control refers to the process of adhering to
project goals, specifications, and standards. The inadequate communication caused by
distance also poses a serious challenge towards team coordination and control. For
software engineers and knowledge workers, coordination and control have in many ways
blended together where communication becomes the mediating factor between
coordination and control [38], and the exchange of unambiguous information is one
stepping stone towards achieving consensus.

Preliminary findings from a qualitative study [67] [69] in GSD have identified three
genera types of coordination problems experienced by software devel opers, depending
on the sub-task interdependencies that are involved. These coordination problems provide
the basis for constructing the coordination success variables: technical (i.e. software parts
do not work well together), temporal (i.e. software parts not ready on schedule), and
process (i.e. lack of adherence to the established software process) [48].

Distributed ontology development suffers from similar problems, for example, the

lack of consistency in the concepts and relationships being developed. The following

49

example was documented by my colleague, Polly Allen, during her visit to the Digital
Anatomist Foundational Model of Anatomy group [27] (also known as the Foundational
Model of Anatomy or FMA) at the University of Washington in Seattle. As part of their
research, the FMA team devel ops ontologies for the structure of the human body. During
their study, it was found that surgeons in North America and Europe both divide the
human heart into five regions for study, and for each part, surgeons from both sides share
many similar terminologies. When they wanted to merge the ontol ogies they have each
developed for the heart, they found that the way they have divided the heart into five
parts are dightly different with each other, which brings complications for the merging
task.

While coordination and control are necessary to manage interdependencies within the
tasks, they are also important for the development and maintenance of shared mental
models [100]. Shared mental models are based on organized shared knowledge, which
helps collaborators form accurate explanations and expectations about the task and each
other, thus helping them coordinate explicitly. The effectiveness of shared mental models
in supporting team work has been extensively studied and proven not only in global
software development, but also in other work environments, such as air traffic control,
aircraft cockpits, fire fighting, and emergency medicine.

The functions of communication in supporting shared mental models are two-fold
[100]:

1. Communication during task execution refines team members shared mental
models with contextual cues, which may result in more accurate explanations

and predictions of the team task demands.

50

2. For maintenance purposes, communication is heeded to keep the shared mental
models up-to-date with regard to the changes that occur during task execution.
Especialy in dynamic or novel situations, communication is needed to
maintain an up-to-date shared mental model of the situation and to adjust
strategies or develop new ones to deal with the situation.

Weak shared mental models in asynchronous tasks like software development can lead
to uncoordinated activities and productivity losses due to re-work and missed deadlines
because important task interdependencies may not be adequately managed [48]. Thisis
further aggravated in geographically distributed environments where team members have
fewer opportunities to interact with each other, and often have to do so through lessrich
media (e.g., e-mail, shared databases, etc.), thus making it more difficult to develop
shared mental models.

These findings are also becoming troublesome in the rapid evolving ontol ogy
engineering field where geographically distributed knowledge engineers work on tasks
that have dependencies among each other.

In summary, effective communication plays a critical role in the successful
orchestration of a global software development project in order to facilitate coordination
and build team shared mental models [38]. Effective communication support for
distributed ontology development, which has similar development processes and life
cycle models as software engineering, will be of equal importance.

The importance of informal communication has led to a variety of tools designed to
stimulate casual conversation among workers at different sites. Those tools mainly fall

into two categories [69]:

51

1. Tool support to compensate for the loss of frequent informa communication.

2. Toolsthat bring group awareness to the work and keep team members informed of

each other’ swork status.

Designing tools to support and enhance informa communication is the major
approach to bridge the missing link in distributed devel opment work. Researchers in the
GSD field have also suggested designing the organization and assigning work in order to
reduce the amount of informal communication required; athough thiswill not eliminate
the need for informal communication, the god is to reduce it to a more manageable level

[96].

5.2 Documentation and K nowledge M anagement

The software development community has realized that alarge number of problems
can be attributed to un-captured and unshared knowledge [84], specifically the need of
knowing ‘who knows what’, the need for distance collaboration, and the need for
recording the lessons learned and best practices. Information and knowledge obtained
during meetings, email correspondences, and instant messaging need to be captured
easily, stored and shared effectively. The distribution of resources and developersin
space, and time combined with the the dynamic evolution of knowledge make the use of
tools for knowledge management a necessity in software development. The content
management and bug/issue reporting systems used in software engineering may well be
useful in the ontology engineering field.

Poor documentation can also lead to ineffective collaboration. In addition to having
the design and the system well documented, keeping the documentation up-to-date is

equally important. To prevent incorrect assumptions and ambiguity and to support

52

maintainability, documentation must be current and reflect what various teams or
members are working on [66].

A close examination of the collection of tools used for documentation and knowledge
management in software engineering will provide us with insights on how effectively

they can be used effectively for ontology development.

5.3 Version Control and Change Tracking

In software engineering, there are a variety of tools for version control, source code
management, and change history tracking, such as, CVS, RCS, and SourceSafe. Even s,
advanced technologies for supporting version control and change tracking in ontology
development has yet to emerge. Version control systems in software engineering are not
directly applicable to ontology development. For instance, the minimum unit of version
control in CV S is file; the system does not have the notion of concepts, instances and
relationships, which are the basic building block of an ontology, and are the subject of
versioning and change tracking.

The following diagram illustrates how the devel opers at the NCI (National Cancer
Institute) handle version control and change tracking while developing an ontology (NCI
Thesaurus™) for cancer research. Due to the rapid rate of evolution of cancer science
and the demand for developing an ontology for it, researchers at the NCI find it vital to
do multi-editor development [64]. In order to overcome the difficulties described above,

they invented this work flow system to marege multi-editors work:

53

Lead Editor
»= Merge, resolve conflicts, export weekly basdline
= Generate history table
= Publish monthly released version of base line

Check in work : . Get anew basdline versior

changes ever every week
5, . V P
Editor’ < Editor’< Editor’ <
workspace workspace workspace | .. .-

Editors work incrementally on weekly
baselines

Figure9: Work flow diagram for developing NCI Thesaurus™

We created the above work flow diagram based on the description of the system given
by Hartd in [64]. Asillustrated inthis diagram, each week, the common baseline of the
ontology is loaded onto each editor’s work space. Each editor also gets a work
assignment from the lead editor. Each editor then sends a set of changed concepts for a
particular assignment to the lead editor weekly. The lead editor takes the bulk of the work
of merging the changes submitted by multiple editors, resolving the conflicts, using a
software application to produce and update a history table for each concept, and in the
end, produces a consistent baseline version. The process repeats after each baselineis
released.

The higtory table is published as an APl and shared among developers after it is
exported. Each record in the table reflects the trace of evolution of a particular concept,
and is the source of information for developers to understand the history and state of the

system. The structure of a history table is presented in Table 6.

Table6: Structure of the concept history tablein the NCI Thesaurus™

Column Name Description

History ID Record number
Concept_Code Concept code

Concept_ Name Preferred name of concept

Action Edit action

Reference Code Referenced concept code

Edit Date Timestamp

Edit Name Name of edited NCI Thesaurus™ schema
Host | P address of editor's workstation
Published Publication state of history entry

The work flow constraints in the system are as follows:
= Individual editors cannot commit their changes at any time
= Maerging, which is alarge undertaking, has to be handled by one person, the
lead editor, who does not necessarily understand all aspects of each developers
work and the rationale behind every merged of concept.

The red lines in Figure 9 suggest collaborations among individual editors which are
not supported by the system right now. The idea is that by increasing collaboration
among ontology editors, conflicts about concepts can be discovered earlier, and possibly
resolved before submitting to the lead editor. Fewer conflicts will be helpful in reducing
the development time and reducing the work load of the lead editor.

The development environment used by the Thesaurus project at NCI is the commercial
software system called the Apelon Terminology Development Environment, the Apelon
Workflow Manager©, and the Apelon Distributed Terminology Server [1].

In projects where such an advanced system to support distributed development is not

available, the development resources have to be placed in a collocated fashion, and

55

knowledge engineers have to carefully coordinate the work among team members to
make sure that two devel opers do not work on the same part of the ontology in order to

avoid the complication of resolving conflicts.

54 Summary

This chapter presents three significant challenges that collaborative ontology
engineering is facing: communication problems intensified by distance; documentation
and knowledge management; version control and change tracking. Although these
challenges are inferred from the findings in the GSD domain, they also manifest
themselves in ontology engineering field. Our team has also had experiences with these
problems while developing a bibliography ontology and we believe these problems
warrant a set of solutions that would be beneficial to the existing ontology development
tools and practices.

The next chapter looks at tools and technol ogies that have been used to support
collaborative software engineering, and further discusses their potential for being used by

or integrated into ontology development tools.

56

Chapter 6 Using Groupwar e for Ontology Engineering

We have observed many of the problems and insufficiencies in collaborative ontology
devel opment; but the growing demand for ontologies for the semantic web, artificial
intelligence and many other scientific domainsis calling for the rapid development of
higher quality ontologies. The ontology development community needs tools to support
thelir collaborative devel opment work.

Inspired by the success of groupware and the promise of newly emerging peer-to-peer
technology, this chapter presents functions and characteristics of some groupware

technologies that have been used in areas such as GSD (global software development).

6.1 Instant Messaging

As instant messaging gains its popularity, sending text messages and, increasingly,
audio, video, files of any sort, interactively, it is aready being put to use in business
environments [40]. Workers are using it to share documents remotely, ask a quick
guestion or exchange notes during a meeting, all despite being hundreds of kilometers
apart. Instant messaging has aso established itself in cell phones, PDAs and many other
electronic devices as part of the short messaging service (SMS). The instant messaging
“buddy list” provides group awareness by continuous updating the presence information
of friends and coworkers. It brings synchronous, real time communication to work places.

In summary, instant messaging applications are primarily used [80] to:

= Ask quick questiors or request clarification,
= Coordinate and schedule work tasks;

= Coordinate impromptu social meetings;

57

= Keep intouch with work colleagues.

Some studies found that most instant messaging communications tend to be brief,
with media switching and multitasking prevalent among instant messaging users [72].

While instant messaging is becoming as ubiquitous as email, they are limited in terms
of expressiveness, since they convey nothing other than the words we put on the screen;
the tone, expressions, and other nuances we have in face-to-face communication that are
essential for creative and innovative work are not communicated in instant messenger
dialogues [54]. Currently, we use emoticons in email and instant messaging to
supplement the lack of emotion; there is still along way to go before we can bring al the
intimate elements of face-to-face collaboration into remote collaboration supported by
software.

In the interface design for instant messaging applications, there seems to be no single
answer to the question of how to best handle the interruptive nature of instant messaging.
Thetask of dismissing pop-up windows, recognizing and processing audible alerts have
the potential to distract the user; to what level those signals constitute interruptions really
depends on user preferences or tolerance, the nature of the work at hand, and even varies
throughout the day (for example, interruptions become more acceptable in the afternoon
for some). The design of the interface should look at ways of making user aerting
mechanisms customizable to accommodate these different needs.

Awareness of what one's distant colleagues are doing and their availability for
interaction is often found to be useful in initiating further interactions. Instant messaging
applications provide peer presence information and support for informal communication

that may be helpful in supporting collaborative work.

58

There are many proprietary (i.e.,, MSN, AOL, Yahoo, and ICQ) and open source
instant messaging services available. Each of these instant messaging systems has its own
communication protocols and are therefore not interoperable. In order to enable the
interoperability among all the proprietary and open source systems, the Internet
Engineering Task Force (IETF) istrying to establish a standard for instant messaging: the
Instant Messaging and Presence Protocol (IMPP) is at the stage of request for comments
(RFC 2779), it is expected to become a standard when it stabilizes in the user and
research community.

The problem with ssimply using general purpose instant messaging applications in
ontology development environments is that IM is not integrated with the ontology
development environment and it is hard to associate the message with contextual
information of the host system. The tight integration of an instant messaging system with
an ontology development system at both the data and presentation levels would be an
important step towards fully harnessing the power of instant messaging. Implementing an
instant messaging system from scratch is obviously not necessary; it is worthwhile to

investigate various IM systems or platforms and choose candidates for integration.

6.2 Waeb Portals

A web portal is aweb site that provides information content on a common topic, for
example, a specific city or domain of interest. A web portal allows individuals that are
interested in the topic to receive news, find and talk to one another, build a community,
and find links to other web resources of common interest [25]. Portals create a
customized single gateway to a wide and heterogeneous collection of data, information,

and knowledge. They also provide different kinds of personalization so that content is

59

presented in a manner that suits the individual’s role within the organization and reflects

personal preferences [84]. Portals support knowledge distribution as well as organization
of the display information. Web portals use web browsers as the infrastructure to provide
a ubiquitous accessing medium for distributed content and knowledge.

Figure 10 shows a knowledge management system architecture model in an enterprise
setting [76]. The shaded areaillustrates the position of the knowledge portal in a
knowledge management system. Through portals, knowledge can be distributed to
different users and applications in the business application layer.

Examples of web portals support team collaboration include Bugzilla[3], Tack+ [22],
and group web log/project log systems (e.g., Drupal [7]).

A project log is a collaborative web log focusing on a specific topic. Members write
about issues relating to the development of the project by posting messages to a website
where the messages are stored for chronological display and commentary.

A project log is good for logging change information and managing group knowledge
in general. In some ways a project log can be compared to a mailing-list, the difference
being that the user does not have to send or receive e-mail to participate in a discussion.
The project log provides web forms to post messages or comments. Because they can use
many of the features web technology provides, project logs can be equipped with alot

more helpful features (e.g. customization and personalization).

60

Business Application E-Learning Competence Intellectual Froperty Customear Relationship
Layer Managemant Managemeant Managemeant Managemeant
Fersonalized

krnovdedge Gateway
I KM Sarvices I I Data and Knowledge Discovery I I Collaboration Services I I Expert Mebworks I
Diganizanonan

Taxonomy

Knowledge Portal

kKnowledge Map

LDiocument and

Content Managernt_| Knowledge Repositories

Low level |IT Web Browsers, Word Processors, E-mail Browsers, File Sarvers, DEMS, Multemedia Generators,
Infrastructure Messaging Tools, and Internetfintranet Services
Infarmation and sulletin Boardss Datahases elactronic Emails Multimedia Lagged
KEnowledge Sources Mewsgroups Diogcuments Files Chats

Figure10: A KM architecture model shows how various parts of the system obtain, store, classify,

and distribute knowledge

Project logs can become the center stage for communication to the whole project
group. They are a convenient source for finding updates about a project’s status.

Issue tracking systems are similar to web portals in the sense that they both provide a
single gateway and personalized access portal to a central knowledge repository. Issue
tracking systems focus on bug/issue reporting, tracking and managing, while project logs
can be used in ontology engineering teams for managing knowledge bases, sharing
project information and group discussion. Issue tracking systems are specifically
designed for issue and bug reporting, inter-related task tracking, work status and progress
reporting.

Many older issue and bug tracking systems are client server based desktop
applications that not only require setting up a server but also require the installation of
clients on each individual user’s computer. The newer systems developed in recent years
are mostly web based and use a web browser as the universal client. The primary benefit
of web based systems is the reduced cost of making the client portable over multiple

hardware and software platforms together with the decreased cost of distributing clients,

61

release patches, and upgrades. The primary concern left isto ensure the client is
supported by web browsers from different manufactures. Leveraging standard web
browsers makes the system more accessible to alarger user community, thus improving
the rate of user adoption.

Regarding server sidetechnology, Microsoft Windows-based bug tracking systems
usually require Windows 20003 or Windows XP server as the operating systemwithan
application server and a Microsoft SQL Server for database support. Most free bug/issue
tracking systems are UNIX-based and usually require a MySQL or Postgres database.
Table 7 shows an overview of system configuration for the most common bug/issue

tracking systems; integration with version control systemsis not available on al systems,

Table7: Overview comparison of Bug/lssuetracking system requirements

Windows (2003/xp server) | Linux/UNIX
Database MS SQL, MySQL MySQL, PostgreSQL
Web Server IS server Apache, iPlanet

Application Server

WebSphere, JBoss

WebSphere, JBoss, J2EE,

Programming Language

ASP, Visual Basic, C#

Perl, PHP, JSP, Java,
CIC++

Version Control Integration

SourceSafe

CVS

Initial Cost

Commercia software

Commercia software and
open source software (GPL
license, BSD license)

Although free software and open source software have alow initial cost of

procurement, for calculating the total cost of ownership, the following factors need to be

taken into account when selecting the right bug/issue tracking system.

1. IT infrastructure (i.e., whether CVS or some database systemis already

available in the environment)

2. Support (i.e. whether there are IT professionalsin your organization to provide

daily operational and maintenance support, or whether you have to rely on

62

support from the software venders or commercial support for open source
software)
3. theskill of individual users (the cost of training for using the system may vary
largely depending on the skill level of the software system users)
When the system and users requires technical support and it is not freely available, the
expense for hiring professional support for an open source system can be high enough to

drive the total cost of owner ship (TCO) higher than a commercial system.

6.3 Peer-to-Peer Networks

Peer-to-Peer (P2P) generaly refers to technology that enables two or more users to
collaborate spontaneously in a network of equals (peers) by using specialized information
and communication systems without the necessity for central coordination [5]. One might
still think P2P systems are useful for illegal music swapping, but further research would
reveal thisto be ahasty conclusion [31]. This section takes a closer ook at peer-to-peer

technology, and many of the benefits it promises to deliver.

6.3.1 Taxonomy of Computer Systems

All computer systems can be categorized as centralized or distributed. Distributed
systems communicate and coordinate their actions within a network and may be further
divided into those implementing the client-server model or the P2P model.

When all clients only communicate with asingle server or a cluster of servers, it is
caled aflat client-server model. When servers are arranged at various levels in order to

improve the scalability of the entire system, it is called a hierarchical client-server moddl.

63

The P2P model can either be pure or hybrid. In a pure model, there is no centralized
server. In a hybrid model, peersinitially contact a central server to get meta- information,
or to verify security credentials [85], and from then on, peer-to-peer communication is
carried out without the involvement of servers. Examples of the hybrid model include
Groove [9], Napster and Magi [11].

Computer Systems

NN

Centralized Systems Distributed Systems
(mainframes, SMPs, workstations) / \
Client-Server Peer-to-Peer

PN

Flat Hierarchical Pure Hybrid

Figure11:A Taxonomy of Computer Systems[85]

6.3.2 What are Peer-to-Peer Networ ks?

A peer-to-peer system, (or P2P), leads many of us to think about things like
decentralization, self-organization, anonymity, etc. However, it is hard to give asmple
definition of what P2P is and what it is not; no agreement has yet emerged either in
research or industry. Since P2P is many things to many people, P2P can be a mind set, an
implementation choice, a property of a system or an environment [85].

The best example for peer computing, in the eyes of the public, continues to be
Napster whose number of users reportedly reached 50 million [47] at the peak of its
service. Before it was forcibly shut down, it demonstrated that it was easy to be adopted,
and that it had outstanding scalability. Its business model was soon replicated by

hundreds of companies.

64

Fortunately, the domain of peer computing is much broader than Napster. Some of the
benefits of a P2P approach include: improving scalability by avoiding dependency on
centralized points, eliminating the need for costly centralized infrastructure by enabling
direct communication among clients; and enabling resource aggregation [85].

The Peer-to-Peer Working Group (P2PWG), created by agroup of leading IT
companies including Intel, Cisco and HP, is looking to draft industry standards for P2P
technologies in order to lead the advancement and interoperability of peer-to-peer
computing. It defines P2P as the sharing of computer resources and services by direct
exchange between systems [16]. These resources and services include the exchange of
information, processing cycles, and files. Milgjicic [85] considers P2P as a class of
systems and applications that employ distributed resources to perform a critical function
in a decentralized manner. Biz2Peer technologies, one of the leading P2P technology
companies [2], defines it as the coordinated use of geographically distributed resources in
the absence of central control, based on direct exchanges of information. Finally, Clay
Shirky at O’ Reilly [19] defines P2P as:

A class of applications that takes advantage of resources storage, cycles, content,
human presence available at the edges of the Internet. Because accessing these
decentralized resources means operating in an environment of unstable connectivity and
unpredictable I P addresses, P2P nodes must operate outside the DNS system and have
significant or total autonomy from central servers.

If a peer is defined as one that is of equal standing with another [33], then a P2P
system is one in which autonomous peers deperd on other autonomous peers for

information and computing resources. Peers are autonomous when they are not wholly

65

controlled by each other or by the same authority; the peers connected to their peer

network make up the system as awhole [85].

6.3.3 Historical View

The concept of P2P is not totally new. In the 1960s, the Internet was originally
conceived as a peer-to-peer system, and the goal of ARPANET was to share computing
resources. The first few hosts on the ARPANET were from a handful of universities
including University of Californiaat Los Angels, University of Californiaat San Barbara,
and the University of Utah. Those hosts were already independent computing sites with
equal status. The ARPANET connected them together not in a master/dave or
client/server relationship, but rather as equal computing peers[11]. It later evolved into a
client-server system and is now dominated by large organizations and corporatiors.
Today’s I nternet expands the horizons of the ARPANET infrastructure along several
dimensions, such as scale, performance, and higher level functionality.

In UNIX, the talk utility has always been peer-to-peer, and while File Transfer
Protocol (FTP) is based on aclient-server architecture, its usage pattern is symmetric,
meaning that any individual can run an FTP server on their home computer. Furthermore,
the Domain Name System (DNS) has the characteristics of a hierarchical peer-to-peer
system [19]; it scales very well from a few hundreds nodes to millions of nodes on the
Internet at this stage. Lessons learned from the DNS system are directly applicable to our
contemporary peer-to-peer data sharing applications.

The increase of computing power and storage capacity on personal computers has
opened a market for a new form of distributed system, a P2P system. Many believe that

there are three fundamental enablers/drivers for peer computing that recently reached the

66

point where the technology began to mature, and thus make P2P system an important
system model today, as opposed to years ago. They are [47] the:

ubiquity of computing hardware usable as a peer platform;

ubiquity of network connectivity, and;

need for local control over networked applicatior

Both researchers and industry are looking for the killer application for P2P. At this

stage, many people believe that an application that finds the right niche to provide users
with proper local control over collaboration, communication and customization is likely
to be this “killer application”. Imagine doing some financial analysis on your bank’s web
ste—financial analysis that you want, but had not been or may not ever be programmed

into your bank’s server [47].

6.3.4 Different Peer-to-Peer Systems

Figure 13 shows the distribution of the existing tools in the following dimensions:
File sharing. File sharing in P2P is away of aggregating many peoples file
systems into one logical, integrated “file system” to which access is optimized in
spite of bandwidth and disk space constraints [47].

Collaboration and communication. The inherently ad-hoc nature of P2P
technology makes it a good fit for user-level collaborative applications.
Collaborative P2P applications allow users to collaborate, in real time, without
relying on a central server to collect and relay information and without being
constrained by the collaborative features provided by the server. Instant

messaging and coauthoring word processing applications are examples of this

67

class of application. There still exist some technical challenges in implementing

this type of system, like fault tolerance and real-time constraints.

communication and
collaboration
. {rrivove
Centerspan | Jabber
Cyhiko | AIMster Magi

Gnutefla, Freenet

platforms Majo Nation,
Globus |-NET Pointera file
JXTA OnSystems sharing
Pariva Technologies Avaki ."'..":."c;l:-..f:*r

Entrapia, DataSynapse Free Haven, Publins

distributed SET@home, United Devices
computing

Figure 12 A classification of existing P2P systems[85]

Patforms. Platform for peer-to-peer infrastructure aims to provide solutions for
the challenges mentioned above, in addition to support for primary P2P
components, such as naming, discovery, communication, security, and resource
aggregation. The JXTA platform [12] is Sun Microsystem’ s approach in
providing strong interoperability in P2P systems.

P2P systems often bring many benefits such as cost sharing and reduction, improved
scalability and reliability, resource aggregation and interoperability, increased autonomy,
anonymity and privacy and enabling ad-hoc communication and collaboration.

Decentralization is the most prominent characteristic of a P2P system. Centralized
systems are ideal for some applications and tasks, such as transaction management, where
access rights and security are more easily managed. However, a centralized system is
costly to set up and maintain. On the flip side, in afully decentralized system, users have

ownership and control over data and resources. This can be problematic in terms of

68

security and discovering the first peer to which ore should connect. For this reason, we
see many P2P systems built as hybrid approaches.

The most significant benefit of decentralization isimproved scalability. Sometimes, in
order to spare other desirable features, such as determinism and performance guarantees,
hybrid systems often centralize some of their operations, such as centralized file storage
[85]. SETI@home [35], a project started a University of California at Berkeley to search
for extraterrestrial intelligence, has the implementation characteristics of a hybrid P2P
system. Its developers were hoping for approximately 100,000 participants initially, but
they surpassed this number within aweek. Currently, the system supports more than
3,000,000 contributors.

It is very hard to predict the scale and load of a P2P system at any given time, which
in turn requires self-maintenance and self-repair of the system. There is still a serious
challenge in P2P system design in terms of handling intermittent peer availability,
variances in network latency and bandwidth.

Other potentia benefits of a P2P system include reduced cost of ownership, ability to

handle ad-hoc connectivity, and more efficient usage of processing power and storage

capacity.

6.3.5 Challengesto Peer-to-Peer Technology

Despite many of the benefits that come with P2P technology, there are challenges and
open questions to be answered.
1. All P2P system must deal with the lookup problem, which is how to find any
given data item in alarge P2P system in a scalable manner, without any

centralized servers or hierarchy [31]. There are two traditional solutionsto this

69

problem on the Internet. One is to maintain a central database that maps a file
name or object identity to the locations of the servers that stores the data. The
other isto use a hierarchy (awel-known example is the Domain Name System)
and start searches at top of the hierarchy, and reach the desired node by traversing
references from node to node. Both of these two approaches are vulnerable due to
the failure of central node or nodes that are sufficiently high in the hierarchy.

2. Interoperability is a serious issue because P2P systems are being devel oped by
different companies using proprietary protocols and interfaces. Users are locked
into a product once they start using it, which eventually leads to isolated P2P
islands on the network. There are very few efforts in magjor P2P developers to
improve interoperability. The P2P Working Group [16] led by Intel Corp. and the
JIXTA[12] project led by Sun Microsystems are the only two claiming to address
this problem in their systems.

3. Theimplementation of P2P creates additional security challenges on an already
security-challenged network [85]. Security remains the most complex and most
important requirement for the P2P infrastructure [5]. Sharing local files or
granting access to third parties can sometimes have critical side effects sometimes.
For example, unencrypted instant messaging that circumvent firewalls remains a
great concern for businesses.

It is hard to compare P2P with alternatives in terms of scalability, performance,
security, self-organization, and fault-tolerance. This is mainly due to the fact that P2P isa
relatively new technology and is not yet fully understood by the research community; it

has to be widely used or receive comprehensive evaluation in industrial environments.

70

P2P systems will remain an important solution to certain inherent problemsin
distributed systems. However, it is not the only solution and it may not be appropriate for
al problems, bu it will be a strong alternative in supporting data sharing, collaboration,
and distributed computing [85].

In the next section, we examine one of the Peer-to-Peer network designs and

implementations from Sun Microsystems.

6.3.6 JXTA

JXTA [12] is an open source project founded by Sun Microsystems with the
participation of a small but growing number of experts from academic institutions and
industry. 1t was officialy unveiled in April 2001. According to its mission statement, it
explores avision of distributed network computing using peer-to-peer topologies, and
develops basic building blocks and services that would enable innovative applications for
peer groups.

It defines a set of protocols for ad hoc, pervasive and peer-to-peer computing, which
enables applications that are collaborative and communication focused. As shown in Fig.
14, the IXTA protocols establish a virtual network overlaid on top of the Internet and
nonIP networks, alowing peers to directly interact and organize independently of their
network location [103]. This virtual network provides transparency to the complexity of

the underlying network topology.

71

Cutput
Pipe

Service B

Output Service C

Pipe

JXTA Virtual Network

Physical Network

Peer . TCP/IP et @V@H
(falx X g
Firewall ';‘.__ W Peer
S TEERL HTTP

Figure 13 The project IJXTA virtual network [103]

JXTA sees the most precious Internet resources such as information, bandwidth, and
computing powers as being vastly under utilized, partly due to the traditional client-
server computing model [56]. JXTA sets its objectives as:

Interoperability. Enabling interconnected peers to easily locate each other,
communicate with each other, participate in community-based collaborations, and
offer servicesto each other seamlessly across different P2P systems and different
communities.

Platform independence. The JXTA technology is designed to be independent of
programming languages (e.g. C or the Java programming language), system
platforms (e.g. Microsoft Windows and UNIX operating systems), and

networking protocols (e.g. TCP/IP or Bluetooth).

72

» Ubiquity. JXTA is designed to be implementable on every device with adigital
heartbeat, including desktop computers, network routers, data-center servers, storage
systems, sensors, consumer electronics, PDAS, and appliances,

An abstract view of the 3-layered JXTA architecture is shown in Fig. 14.

Ap Jlic“&li:;];‘: JXTA Community Applications jg'?ﬁ
PRlice Applications
JHTA
Shell -
SLn endexing | | o) o
Ser:fll::{:Te:: JXTA Community Services JHTA + Searching . Peer
Services *AleSharing | |Commands
IXTA | Peer Groups | | Peer Pipes | | Peer Monitoring |

Core = -
| Security |

Any Peer on the Extended Web

Figure 14 JXTA softwar e ar chitecture [56]

6.4 Groove Workspace

Developed by Groove Networks, Groove Workspace is an application for personto-
person communicationand small group interaction and collaboration. Besides the instant
messaging functions, Groove has a richset of collaboration features. With Groove
Workspace, users can create virtual shared spaces where they make immediate and direct
connections to perform awide variety of activities, from working on a project,
brainstorming, planning an event, discussing issues, sharing drafts and proposals, to
coordinating schedules. Users can take advantage of team file sharing and co-editing,
project and meeting management, co-browsing, document review and approval, image

markup, group discussions, chat and instant messaging functions. Teams of users across

73

the boundary of organization and firewalls can gather al the information in a shared
context so that they can make better decisions and get work done more efficiently.

Groove Workspace is designed to operate on a hybrid peer-to-peer network; its
prominent differences as opposed to the client-server approach are [6]:

1. The Groove Workspace sits directly on users' PCs, not on aweb site or
centralized server. All application logic and data is stored locally on the desktop
of each member of a shared space. If there are four members in the space, there
are four local copies of the space. The Groove platform uses an XML object store
as its foundation.

2. All content, activity and gestures made by any member of the space are
immediately duplicated on the desktops of the other members. Peer-to-peer
communication is handled via XML message passing, which makes for
lightweight traffic and efficient use of the network.

3. Thereisno ‘master copy’ of the data in a shared space. Eachmember’s copy of
the data is a peer in the network. The Groove platform ensures that the content
and state of the shared space is synchronized across all members' machines.

4. The Groove architecture is a hybrid peer-to-peer architecture that includes arole
for aserver or switch, called the Relay Server, to broker connections between
offline members (who may never be online at the same time) and members
separated by network firewalls.

Group discussion sessions in Groove are less disruptive than instant messaging. The
system tray icon is aways on when user is logged onand there is no alerting sound or

flashing icon when a message arrives or other userslog in. Since many messages are

74

directed toward a group or other individuals, users do not feel compelled to read new
messages immediately. However, for users who are accustomed to instant messaging
style and rely on aderting signals, they have a high chance of missing the message on the
discussion board or are not able to keep up with the discussion while multi- tasking.

In a graduate directed study course in the Department of Computer Science at the
University of Victoria, Groove was used by ateam in designing a software requirement
engineering tool. The group used the Groove collaborative software to provide both
formal collaboration capability (document-sharing) as well as informal communication
(such as instant messaging, threaded discussion groups, and physical awareness). Team
members found Groove' s absence of an alerting cue a problem in recognizing who was
participating in the discussion. It was reported severa times that users were unaware that
another user had logged in and had started monitoring the discussion and work until they
engaged in instant messaging with each other. It was because that member’ s presence
information was silenced when he/she logged in.

Since Groove Workspace depends on peer-to-peer technology, team members had to
depend on “running into” ateam member with the latest version of each document online.
Due to this problem with sharing documents, users grew to mistrust the tool and resorted
to e-mail to share documents [28].

In general, users found that Groove was best for highly collaborative and interactive
tasks. It can potentially be used to support distributed ontology authoring among multiple
developers, real time collaboration and communication, and support both ad hoc and

structured communication.

75

Chapter 7 Collaborative support for Protégé-2000

We introduced the ontology editing tool Protégé in Section 4.5. The recent Protégé 2.0
beta release has added multi- user support capability by storing the ontology being
developed in a shared database. This allows multiple users to read the same database and
make incremental changes or changes that do not conflict with one another. There is,
however, no support for multiple users trying to modify the same elements of a
knowledge base or notification of changes made by other users. Concurrent changes to
the same section will cause severe problems. This multi- user capability is till
experimental at this stage and has not undergone any “red life” testing [17].

The word “multi-user” is used to describe the fact that the beta version has functions
to support limited collaborative work among more than one developer. By looking at the
dimensions of collaborative ontology engineering discussed in Chapter 5, we realize that
there is still a gap between simple multi- user support and full- scale collaborative support.
The discussions we had in Chapter 6 about using groupware to enable collaborative
ontology development can be applied as a guide towards the long term design of
collaborative features in Protége.

We see our exploration of groupware technologies as aroad map for designing and
transforming Protégé into an ontology devel opment environment with collaboration
support in more than one dimension, however we believe the following work will need to
be done in order to weave these technol ogies together and find a path to achieve this goal:

First, an ethnographic field study on an ontology development team that uses

Protégé should be done. We recommend this study be conducted in order to better

76

understand the type of the work of Protégé users perform, the context under which
Protégé is used, and how their collaborative work is currently organized in the
development team. The result could be used to determine which groupware
technologies, without being invasive to the users or disruptive to the team work,
and in what form, should be integrated or used to support collaborative work in
Protégé. The aim is to ensure that groupware being designed and integrated with
Protégé will be adopted by Protégé users and teams, and will effectively facilitate
the collaborative work.

Based on the results of the ethnographic field study, a preliminary set of
groupware technologies could be selected as candidates for integration with
Protégé. From here, it would be feasible to design and build a prototype system
that incorporates Protégé and multiple groupware technologies, which in turn
could be used for further user studies in order to verify and refine the design.

We conjecture that the specific needs for collaborative support will vary depending on
the domain the ontology is being developed for and the setting of the development team.
Thisis aso part of the reason why we suggest the above studies. Several groupware
technologies integrated under a highly user customizable system will likely be one of the
ways to satisfy these diverse needs.

To further investigate the application of groupware technologies, we have explored
several of the technical alternatives we discussed based on the needs of usersin specific
domains. We took Protégé as the core ontology authoring module for the devel opment
environment, and did an experiment to incorporate peripheral collaboration support

around it, such as using the Peer-to-Peer technology. The experimental results are

77

presented in the next section. These results are useful for the Protégé developers when
designing future multi- user versions of Protégé. Moreover, we also recommend the usage

of web portals such as Drupal (http://chiselog.chisel.cs.uvic.ca), which, as an example,

was customized and administered by Neil Ernst and used by the CHISEL Research
Group for organizing and sharing group knowledge. Finally, we suggest the adoption of
a change tracking/visualizing systems, such as PromptViz, which is awork in progress by
my colleague David Perrin, also with the CHISEL Research Group. Finally, we present
our design and implementation of a live bookmark — a system artifact that ams to

diversify the means of information sharing in collaborative work.

7.1 Protégé-2000 and JXTA

This section describes the experiences and lessons learned during an attempt to
implement a collaborative environment for Protégé on top of a peer-to-peer network.

We explored the idea (see Fig. 15) of making Protégé operate on top of a P2P network;
where each Protégé instance acts a node/peer on the JXTA network, utilizing the
network’ s basic messaging and security service. The goal was to enable informal and
spontaneous communication among Protégé users through instant messaging, and provide
group awareness as well. The network was to become the group knowledge repository
(with gather and retrieva functions) for a Protégé project and the collective storage

gpaces on developers’ workstations would be the physical medium.

78

Protégé with group
awareness support

R — —
Collaboration plug-in for Protege

e T e

JXTA Platform

Figure15: A tentative idea for Protégé-2000 collaboration plug-in

The JXTA platform has the notion of a user group, which allows developersto form
working groups and join or leave a group as their interests or the focus of their work
shifts. Compared with the Groove application that puts everyone in one default working
group, this function helps collaborators filter irrelevant information during collaboration.

The challenge with implementing applications directly on the JXTA platform is that
JXTA lacks a high level programming interface, and since it is still in the initial
development stage, the constantly changing APl makes it even more difficult to produce
a prototype. Thisis aso one of the reasons that many of the projects listed on JXTA’s site
remain in acrude phase [8].

In our experiment, the project myJXTA [14] was chosen to be used as the base to
develop the collaboration plug-in for Protégé. It is an application designed with instant

messaging, file sharing and resource searching functions.

79

B mo X1 A Pecy probege

G Hal

Figure 16: myJXTA application in group chat mode

Unfortunately, our attempts to integrate Protégé with JXTA were not successful.
Although it is one of few working prototypes that demonstrates the ability of JXTA
network, it has not yet reached the state that can be easily extended and integrated into
other applications. A great deal of time and effort was spent on studying its sparsely
documented code, and very little documentation could be found on more detailed design
programming interface. Ultimately, it was determined that this single factor effectively
prohibited any further progressto be made. A more informative programming guide for
some of its modules was recently published on the JXTA project web site by the time of
writing, but wastoo late to help our prototype for this thesis.

JXTA isnot the first implementation of a P2P protocol and P2P network infrastructure,
nor will it be the last. Though the project does make a good exploratory attempt at
determining what such a framework might look like. Its success lies in moving from a

research tool to useable framework and its adoption by developers and extension by the

80

community [63]. As a strong P2P network research initiative from SUN Microsystem and
with a growing developer community, JXTA continues to be a promising candidate to
grow into a mature P2P platform.

Though the infrastructure is still evolving towards its maturity and does not satisfy our
requirements at this moment, we believe the exploration is on track towards achieving
group awareness support. Moreover, our results suggest that this technology needs to

further mature before it can support integration with Protégé.

7.2 Capturing Group Knowledge

Groups that manage and maintain their organizational knowledge have been found to
have higher capacities for absorbing and making use of new knowledge [41]. Polly Allen
in the CHISEL Research Group designed a system called Shrimpbib [27] to capture and
share bibliography references accumulated during each group member’ s research.
Through this system, the knowledge about the literatures in a particular research areais
no longer closely tied to a specific student and will be preserved and passed on even after
the student leaves the group. New members of the group will not have to re-acquire this
knowledge through experience, and can hence build their work on top of another. Asthis
system starts being adopted and used in our daily research activities, it saves us precious
research resources, such as time, funding, and human resources.

Figure 17 illustrates the system architecture of the Shrimpbib system, which isan
integration of several tools. Group members usually use the web front-end for
entering/capturing new bibliographical information, while expert Protégé users may

directly use the Protégé interface for this task. In the current development phase,

81

members of the group need to use Protégeé to share this knowledge, the goal for the next

stage is to make this shared information also available through the World Wide Web.

Existing r =
formats Web-based

Repository
(PostgreSQL)

/1sualization Too
(Jambalaya)

ibliographic Too
(EndNote)

Protege API

Figure17: A diagram of the Shrimpbib architecture of integrated tools[28]

The Shrimpbib system enables us to easily capture and share bibliographical

information; but we also experimented with a web content management system in order

to accomplish awider range of knowledge capturing and sharing tasks. We used Drupal

(http://drupal.org), which is an open-source platform and content management system for

building dynamic web sites. It offers a broad range of features and services including user

administration, publishing workflow, discussion capabilities, news aggregation, metadata

functionalities using controlled vocabularies and XML publishing for content sharing
purposes. Equipped with a powerful blend of features and configurability, Drupal can
support a diverse range of web projects ranging from persona web logs to large

community-driven sites [10].

82

The CHISEL research group set up and configured Drupal
(http://chiselog.chisel.cs.uvic.ca) as aforma mechanism for maintaining or managing the
organizational knowledge created during each member’s research. It is being used for
web logging of research ideas and progress, as a group forum, for organizing and sharing
bibliographical dataamong members of the group. It has been heavily used by some
members of the group and is gaining more users as many of the advantages it brings start
to surface.

Drupa meets many types of collaboration needs, and has found its way into
supporting lots of other organizations, such as the community web portal for the Debian
operating system (http://www.debianplanet.org) and the Linux user community
(http://kerneltrap.org).

We believe that Drupal can be customized to support the collaboration of an ontology
development team that uses Protégé because it can help to address the knowledge
management and documentation type problem we discussed in Chapter 5.2. The tasks it
supports and its usage scenarios include:

FORUM FUNCTION

The forum function captures and disperses project information among the Protégé
users. Many of us may have had the experience where at some point email broke down
for highly collaborative and interactive teamwork. As soon as we participated in a
seemingly endless thread of “reply-to-all” emails with multiple attachments, we would
readily recognize that email is poorly suited to project work that requires more then
messaging back and forth [6]. The forum is well suited for group discussion including

one or more topics. An ontology design or an implementation topic that merits group

83

discussionis a good example. Each discussion thread represents a coherent topic, and
contains al the postings related to this topic. All these postings, contributed by team
members representing their opinions and ideas, are organized under the “respond to”
relationship (see Fig. 18) and presented in a hierarchical tree structure. A discussion
thread naturally reinforces and facilitates a consensus building process, which is much
needed and critical to a collaborative ontology engineering methodol ogy.

Once recorded in this central repository, the group knowledge about a certain design
idea/rationale or the creation of a concept in the ontology is not scattered in many
members inboxes anymore. After visiting and reviewing the discussion threads in the
forum, a new team member will be able to get a pretty good picture about the ins and outs
about the team’s work. This will greatly help the member get up to speed. The indexing
and searching functions in the forum improve the knowledge retrieval speed and reuse
rate. The group knowledge preserved in the forum becomes invaluable information

capital within the team and the organization.

g.d-.l_'ul_'l:‘-.j | connmmissty phandiing - =tcrosdlt koo Esgiliesir I
Em o Rl am Faontes Ik e » | &
Ot « QD+ 1x] (2] (0] o e WP resn €| (- L[&3
Ay L] e itk i anFon iz 8=
| e oo | oy e i EE @
Goge-| Z) e ntriith - Gkoowiitie | | O+ | Edoeony [Ey - #
Himie & FOriiry -:‘.i
Projeclt chscussion and suggestions
craate naw fomum topic
I opic Repiles Croatod Lask reply &
) anh e 5 lojinjsons- 10 |2/10/2003 - 0252
- - ! i by EEiEWS by Ebatie i i p sl org
Uirapeal
Baarch andglns
g lpsto L0/ 200% - 16: 3¢ Lificyen0s— 1831
Irepdlorg DY AU [y ST LS
Hareatogpamani
Ay iy i D90 200E - 10:54 0o9/10fan0s - 19:08
:1__'_:"&;" T4 by Ancrvyaricus by shvane
B A | O0yEDIE - 16:38 054162002 - 19:03
':III1|'|I'.||1.|'| 1al 2 BFLeT S i s Bymatien
Sk lar et s e
E3 | Rins I:I .'. o - S AT - (O QR GfE00E — 07158
il b AN LS R e
b A . YEHENNT - T15E OFf 10f 2003 - 04118 -
| "
& TR (eirwm

Figure 18: Discussion threadsin Drupal forun

COLLABORATIVE BOOK FEATURE FOR DOCUMENTATION WRITING

The book organizes content contributed by users into a nested hierarchical structure

that conforms to a book. It is particularly good for enabling multiple team members to

cooperatively maintain an online user manual, or for Frequently Asked Questions (FAQS).

It allows users to create and edit individual chapters, sections, etc. The advantage it

brings is that updates to the documentation can be collected from anybody and at anytime

as necessary. We can also easily use the collaborative book writing function to write a

Frequently Asked Questions (FAQ) section on the project web site. The main benefit is

that not all the questions and answers have to be written by the developers, as the user

community will do alarge part of it.

85

Two burdens are lifted by this function: one is the requirement for dedicated personnel
to update the user manual or system documentation; the other is the need to rely on the
web master to post the updated content.

Figure 19 is a snapshot of the collaborative book writing function.

| drupal_org administration pages - Mozilla Firebird
| Ble Edi View Go Bookmaks Teok Hep
© - @ [b hesupdag/adinode/edy260 =P
-
P - » » . h—
drupal.org Administration » content management » edit node e
= COrtEnL mEn
13 [:ID&t!J
» collzhorg .
- Edit book page
Authored by: Options: Allow user comments:
[Kika M Puplished C Disabled =
B T In moderation queue & Read only
r Authored on: " Promoted ta front page & Headhwrite
) [Jan 27, 2003 10:05 prn I™ Static on front page
-l Wi Create new revision
'
» Title:
» |Instal|ation_proeess
b
" Parent:
’ |—Instal|at|'0n gj
" The parent subject or category the page belongs in.
2 ;?ETrnap Body:
PRSI <p>Thiz chapter describes the generic installation procedure &
for Drupal. Installation instructions for sSpecific
configurations are found at the end of the page.</p>
<.Dl_> G
<li id="1">We assume that you Have some working experience _:,l

Figure 19: Screen capturefor collaborative book writing in Drupal

WEB LOGS FOR INDIVIDUAL MEMBERS

Once registered as a user of the Drupal powered project web site, each member can
start his own web logging. He or she can define access permissions for each log entry
created under his or her account. Public log entries are available to the world, whereas
private ones are hidden from all other users.

Members can be required to log the daily/weekly work progress/status report in their

public log entry. For the benefit of each individual member, it is a good way of keeping

86

track of the work process and for storing rotes and thoughts in a clear and structured
format. From a managerial point of view, the project lead may, at any time, get a good
handle on the working progress of the entire team.

Browsing each other’s log entries are another effective collaboration form in sharing
new ideas and opinions. Even for a collocated team, merely relying on informal face-to-
face discussions is not sufficient for group collaboration [27] mainly because knowledge
and the spark of ideas will easily be lost. A web log entry is aforma way of maintaining
and managing this knowledge. It becomes an inexpensive alternative to large-scale
knowledge management solutions, such as Lotus Notes [71]. Effectively preserving and
managing the knowledge accumulated from one project can be invaluable for the team

and successive projects.

7.3 PromptViz

PROMPT isaplug-in for Protégé-2000 that has been developed to help knowledge
engineers merge overlapping ontologies and find the differences between versions of the
same ontology. One of its primary functions is to compare two versions of the same
ontology and compute the differences between them. Thisis of great interest to us
because it will help solve the change tracking problem we discussed in Chapter 5.3.

Since PROMPT isrelatively new and is still in alate prototype stage, it has not been
widely adopted by the Protégé community. When PROMPT does a comparisonof
ontologies, it generates a merged version of the two ontologies and a table of differences.
PROMPT provides two different views of this comparison: oneis atable view (see

Figure. 20) that lists all of the frames from both ontologies and a description of the

87

change. The other is atree view that displays the merged version of the ontologiesin a

tree using the “is-a” hierarchy [93].

T‘ Protesiss ¥ Srobege-200 [CHDormarents msd S=tkings .I-nlnllrnlrw\ﬁlﬂli.!".l‘rm"'l'h'-ﬂﬂhm'l'!.
Fuidurt Wi deh Prone
Gl =&

| Pt G5

ot LN =

R

I —— - I eitmrstd 1 Ciperson | Sl e sginsin ||
-E FrodetrGormplar Fuliinl] MO May Chargad Fame g emhiezamg =
LR Prosin Familes K Wag LFeeiped o (ds dn e Same
{EXFrojin Kinsse G ha Mnp Creriged fams ids pe the :-nluzf
() Froeins Ha Wap Changad wand lds s the sama |
LY Riiegnior Mo Hip Changed FamE HE G The amd
LB/ Argulniny Froken Ho Mo Cranped Tame ids sielhe =ame |
[Er Biqnaiing Frotain Hn Hap Ctarnno Hamd Iy s fhesame |
BrEmatieal Fronsin: K Map Creazigel Fanis jils de the ssme |
LVTHF Recentor Famir Poteins] Map Cheriped ame ids pe the =am= 8
A TranseEtionsl A Satn it oactmsbns ko Wap Charged Fana (03 ootk camn |
(! Trana oo Tl Mo Hap chagei Fame e aie e same
:_F' Trnapar Broteina Ho Map Srarged Fam= ids gie e =ame
£ Tumai Herms ks Facor FamifyPriein Ko Map CHanpad ramu'ids 3 e s=me |
(xSl Pt Ho Wan Charipad i 1ls and tho-=amn
Coveag! Protan Comenes Ha Mag Cranpod rama lde se ibhesame |
LS At Wi Man {momer phic Tama ids G the s=mn
LB AL negide Hydinligs Ha Hap luarriinli Famd o s lhesame
L Adannine Death Froler Hi) Mop Ipprarphii e L CRE BT =T
[Abtransie@se s ani Aniliansiemses Hn Wap |t Tame 15 sie ke ==me |
L) plahp- Fammprobain L1} Wap Al Fame 15 an NeEEMR
,_lj_-;.rp.-'.r. B Trarssiinm Wi Map (LT g (L1 i Jde win inEsmn
[L4K5E Profen [21] Map Inorerphic Fame ids me the ==ma |
T Anyians Mo Hap iEamerpni Yama (s i ihe-s2mE |
UL Bl [T1] Map sl Wams lds #e (he 2=ns
nparatan l =it e | e | l eI |

Figure 20: Tableview in Prompt listsall the merged concepts from two versions of the same ontology.
There are about one thousand changes listed in thislist

Both views can sometimes become incomprehensibly long, and hard for the users to
establish contextual links between the items in the list and the two versions of the
ontology. This puts additional cognitive load on the users when trying to find out the
rel ationships between concepts and the impact of a particular change to the overall
ontology.

PromptViz tries to alleviate these concerns by using information visualization
technologies. PromptViz creates a treemap view based on the data extracted by

PROMPT. Figure 21 presents a snapshot of the treemap view in PromptViz. The treemap

88

is built using a zoomable user interface, allowing users take control, zoom in and out, and
pan on the graph. Green nodes represent classes newly added, yellow nodes represent a
class relocated to somewhere else, blue nodes represents the new location a class has
been moved to. An arc between nodes represents the changes to the selected node's ot
including addition and deletion of allowed values. Figure 22 displays a view where the
ontology hierarchy is fully expanded to the leaf descendent level; the colored nodes we
can see represent all the changes that happened between two versions of the same
ontology. We consider this view to be a powerful way for developers to get an overview
of all the changes that have happened. If desired, they can zoom to a particular area of
interest to get detailed information.

Upon the release of PromptViz in the near future, we recommend adding it to the

Protégé collaboration environment. Users can benefit from using it to understand the

Tk 0 oo FE00 0t el S v S ko o R 1 o | 0 ST =it =]

ﬂih_!l Wiy il ol
Lo (28

Sl
Abbg Wi T s

. vl:&ﬁ:'q_}| V)| EmwiDevcesieis | Alshs P | Lsgel
[L L L] | gr——

o= Ly oy e B O U = = = e —— il
P L) dans formecon
| i Beagwmanaa of (e Caveagan
| AT e

[, i Temmscsctnm
¥ g Fresplebang
E e o

by i

= e

—_———— =

L L' fajs Efm e
1 R Aembotas Brecomeg and T | -
| LS eian | F—

[P L Ergetaly Frorcas
M5

T T —— T —

E et Snanal |]
— ‘ :
- S Mt Meguaiattas
£ Cramoar e Dondenaefion
W B S e g
A I ;!iie'a.ln-éyié:'li!'r_l!r_--.ug.-.w |
- ir Zlagw 1
T

I'§ [F] ! ity [T [1 - il 2 |

i
i

89

Figure21: Treemap view in PromptViz

el Vi Sl (-

S
el B T Y
e =P i %;E:‘
N e e .
R
i pira -
fra
e
. ma W 1
E Ot i crzabr) = |8 Al I= [
T AN e I por

L LS T
LR e L e
L1 o

PR Wkt d
T TR
11L FearphoT ascie e
Leprine Sawe
L iy W B I =
B R aon 15 e —t—
¥ G Pae " |

Figure22: Treemap view in PrompViz, with all nodes open to leaf level

differences among versions — much like the way CV'S system is used in software
engineering to understand the evolution of code base and differences between code bases.
The above recommendations are made with regard to some of the problems we identified
and discussed in Chapter 5. They are among the many technological possibilities upon
which we can build afull scale, fully integrated collaborative ontology devel opment
environment. Some of the recommendations are not confined to be only applicable to the
Protégé environment and we believe they will also be vauable and inspirational for

collaborative ontology authoring tool developers from other fields

74 LiveBookmarks

90

While working with Protégé users, we have also discovered that visualization
techniques can also be helpful in facilitating collaborative work among multiple
developers. The live bookmark designed by the CHISEL Research Group demonstrates
how this can be realized in a collaborative setting. Live bookmarks can be used to
supplement the Protégé-2000 multi- user support and are discussed in the following

section.

7.4.1 Advanced Visualization and Navigation Enginefor Protégé-2000

Before we get into the details of live bookmarks, let us first look at the host
application of live bookmarks, Jambalaya.

Jambalaya is an advanced informationvisualization and navigation system for
Protégé-2000. The visualization techniques used in Jambalaya includes a zoomable user
interface, arich set of layout mechanisms, many navigational aids, information filtering
and abstraction The Jambalaya tool is designed to enhance how people browse, explore,
model and interact with complex information spaces [101]. Users dealing with very large
information spaces, like ontologies and knowledge bases, often face problems of
disorientation. Jambalaya’ s solution to this problem is to present the hierarchically
structure of information in a nested graph view. It introduces the concept of nested
interchangeabl e views to alow a user to explore multiple perspectives of information at
different levels of abstraction [101]. Jambalaya allows users to directly pan and zoom on
the nested graph to achieve a continuous navigation experience and at the sametime
maintain contextual information; this technique also takes advantage of hyper link

navigation wherever it is available in the document.

91

The left snapshot in Figure 23 shows the grid layout of concepts in the Jambalaya tab.

Classes and instances are represented by blue and pink boxes respectively. The boxes are

nested based on the “is-a” relationship with directed arcs representing slots that relate

classes. When zooming inon a particular node, the contextual information is preserved.

The right snapshot shows the treemap layout. Arcs are filtered in this view and the size of

each node corresponds to the number of children it has. The treemap algorithm allows

users to size the layout based on many different properties such as number of

relationships or instances.

Vol 1 W e
i e

ot e T

i _I_- i]
Ll
5 i —

o B ——

LE =
=

i W Pl [

Figure23: Ontology visualization in Jambalaya

7.4.2 Live Bookmarksin Detail

With its advanced interactive graphic techniques, Jambalaya helps users discover and
reveal tacit knowledge, such as hidden patterns, tendencies, different perspectives based
on levels of abstraction of the information space, and other knowledge that is often not
visible to the users when the information is presented in its origina format. For example,
the cancer Bioinformatics Infrastructure Objects (caBlO) [23] defines entities and the

relationships among the entities found in biomedical research. These entities/domain

92

objects are related to each other, and examining these relationships can bring to the
surface biomedical knowledge that was previously buried in the various primary data
sources [23], such as genomic and clinical information stored in the database. Jambalaya
applies information visualization technologies to help biomedical researchers visualize
and examine millions of entities and relationships.

Even with the tool assistance from Jambalaya, discovering underlying knowledge and
producing useful or insightful views is a time consuming task that require a certain
degree of knowledge and expertise with the knowledge base. It can be frustrating to users
when they find some useful views and later have to go back to repeat many steps (such as
a sequence of combined filtering, layout, and zooming in/out) in order to reproduce that
view.

Another problem reported by Protégé usersis the difficulty in effectively exchanging
information about the knowledge base among developers. One of the difficulties for the
knowledge engineers using Jambalaya is that when they have discovered a useful view
and would like to discuss it with another developer at aremote site, they do not have an
easy way of accomplish this, other than explaining to others all the steps required to
reproduce the same view. This communication process can be slow and ineffective when
the operation is complex. In this case, the devel opers working collaboratively need an
effective way of communicating to each other about their different perspectives on the
knowledge base.

One of the approaches to solve the problem described above is in the form of the live

bookmark. A live bookmark is a lightweight system artifact created to:

93

1. capture the tacit knowledge created during the exploration of an information
space, and facilitate the tacit-to-explicit knowledge conversion process.

2. support collaboration and data exchange among multiple knowledge engineers
with live documents. The Jambalaya plug-in can use the live bookmark to
restore the system back to the state represented by that view.

3. beused as part of the system documentation as bookmarks are easy to create
and they contains arich set of information. As they are lightweight and
suitable for web publishing compared to taking an image of a particular view,
live bookmarks can also be easily sent to others as an email attachment, or
exchanged using instant messaging.

One of the differences between the live bookmark in Jambalaya and a bookmark in a
web browser is that the live bookmark can exist as a standalone artifact to provide
information about a particular view of the system and it allows for a certain degree of

user interaction without requiring special tools.

Figure 24: Using Jambalaya working with the wine ontology; user isabout to bookmark thisview in
the scene

Cousia by ks
s o e Gue et e

g Wine Cuitikeary b detsuneate the.
raptire avl vew of nlpe bockmark:

Figure 25: The bookmark from Figure 24 is opened in a web browser. User has zoomed into part of
the bookmark to see more details using the zooming capacity of the SVG graph.

95

7.4.3 Live Bookmark Specification

The live bookmark is stored as an SV G (Scalable Vector Graphics) file format, which
is alanguage for describing two-dimensional graphicsin XML [24]. The animation in a
live bookmark is implemented in JavaScript and the bookmark can be directly opened in
any web browser with the SVG viewer plug-in that is available from Adobe Systems
Inc.’s website (http://www.adobe.com/svg/viewer/install/main.html).

The bookmark takes advantage of SVG’s ability to efficiently render high quality,
large, complex images in an interactive and dynamic fashion, and the universal support of
the SV G viewer in all mainstream web browsers. One of the SV G animation features is
its zooming capacity, which makes the information visualization metaphor in live
bookmarks correspond to the one used in Jambalaya. This saves the users the
inconvenience of having to learn another set of user control mechanisms. Animationsin
SVG can be defined and triggered either declaratively (i.e. by embedding SVG animation
elementsin SVG content) or via scripting [24].

The bookmark XML file has three parts: the displayable graphics portion, the non
displayable portion, and the script portion The displayable portion takes a 2D graph
drawing on a Java Swing canvas and encodes this graph with XML elements. The non
displayable portion is essentially an SVG element with rendering turned off; it contains
the meta- data associated with the displayable graph, such as the name of the project
associated with this bookmark, layout type of this graph, time of creation, creator’s name,
creator’ s comments about this view, and the creator’ s email address. Other viewers of
this bookmark will be able to send feedback to the creator by a single click on this email

address. The scripting portion contains the JavaScript that enables the animation of the

96

displayable part. At this stage, it enables the tool tip that shows the name of nodes and
arcs when the user moves mouse over them. The script can aso be extended to enable
more sophisticated animations, such as issuing layouts. There is a trade-off between
keeping the bookmark lightweight and repeating all functions available in Jambalaya.
Any decision will be based on the users feedback and requirements as it gains wider
acceptance and use.

Email, instant messaging, web portal, and peer-to-peer network applications can be
used as the sharing and distributing channel of the knowledge captured by live

bookmarks.

7.5 Summary

Looking at this array of recommendations we provide, we are gradually building an
information ecology around Protégé. Bonnie Nardi and Vicki O’ Day [86] define an
information ecology as a system of people, practices, values, and technologies at work in
alocal environment. Local environments, not necessarily in a geographical sense, are
defined by the participation, engagement, and commitment to a set of shared motivations
and values. This ecology metaphor provides a distinctive, powerful set of organizing
properties around those values and goals.

The collaborative ontology development system we are envisioning here has some of
the characteristics of informationecology, and those characteristics are the same as— not
surprisingly — some of the ones that a biological ecology has.

Diversity: each tool takes a different niche in the environment and works together
in a complementary way. While the Drupal powered project web site helps on

managing group knowledge, PromptViz can help each individual developer sort

97

out the complex relationships between versions, while the live bookmark makes
visual representation of the ontology data and the intertwined relationships among
them available for sharing on the Web.
Co-evolution: ecology implies continual evolution, and information ecologies
evolve as new idess, tools, activities, and forms of expertise arise in them [86].
Along with our quest for more comprehensive collaboration support for Protégé
and for ontology engineering in general, we are expecting this research field to
become a brewing pot for innovation and creativity. Tools will change, migrate
and influence each other to fill the needs that come from the user community.
This reflects the dynamic balance achieved in ecologies, a balance found in
motion, not stillness.
As we look to the collaborative ontology development as atype of information
ecology, we must remember that it will take time to grow and evolve. Evolution in an
information ecology begins with our own efforts to shape and direct the technologies we

use and be our choice of the scenarios in which we use them [86].

98

Chapter 8 Conclusion

Ontology development with developers located in geographically distributed sitesis
becoming a common practice. Emerging applications of ontologies in areas such as web
services, content management and genetic research require large, complex ontologies that
must be built and maintained by distributed teams.

This work provides a detailed survey of ontology engineering tools currently used in
the field and the results show that there is a lot of room for adding and improving on the
collaboration support in these tools. The thesis further discusses the specific problemsin
supporting collaborative team work with these tools.

This thesis also examines a range of groupware technologies, explored on their
strengths and potential for supporting collaborative ontology engineering. These
technologies include the peer-to-peer network infrastructure and its applications, instant
messaging, and web portals. The exploration of these technol ogies establishes a roadmap
that can help ontology development teams decide which collaboration tool to choose to
better support their work, or ontology developers can use the survey and
recommendations from this work as a reference framework to help identify their
important requirements. This roadmap can also be beneficial for tool designersin
understanding the state-of-the-art with respect to ontology development tools and help
them decide which collaborative functions need to be improved or added in future tools.
This thesis aso records the technical difficulties and lessons learned during our attempt

of implementing an application for collaboration on the JXTA platform. These recorded

99

experiences may be of help to future tool developers, allowing them to make informed
technology choices and hopefully avoid implementation pitfalls.

Live bookmarks are an innovative approach to help facilitate collaboration among
Protégé and Jambalaya users. Live bookmarks not only captures the tacit and newly
discovered knowledge, but also codifies and expresses this knowledge withthe XML
format and thus hel ps complete the tacit-to-explicit knowledge conversion process.

The results of this thesis are important given the growing number of ontologies
developed for business and scientific applications, and the increasing number of
reguirements from ontology developers for more and better tool support for collaborative
work. The creation of an advanced collaborative ontology environment will help us

produce ontologies faster and of better quality.

8.1 Summary of Contributions

The contributions of thesis include:

1. adetailed survey of existing ontology development tools and environments,

2. theinvestigation of three groupware technologies: instant messaging, web portals,
and peer-to-peer networks, on their feasibility and potential for being used to
provide collaborative support in ontology editing environments. The technical
survey on peer-to-peer networks is useful for future researchers who will continue
the design and implementation of multi- user Protégé-2000 on a P2P platform.

3. anidentification of three issues related to collaboration in ontology engineering,
and an analysis in correlation to the problems and solutions in the global software

development field. These three issuesare: distance and communication;

100

documentation and knowledge management, and version control and change
tracking;

4. arecord of our Protégé specific experiment on peer-to-peer network as a reference
for Protégé designers interested in planning and implementing long term
collaborative features on peer-to-peer network;

5. aset of recommendations for the future designers of the Protégé multi- user
version, based on the problems we identified;

6. the live bookmark created as a collaborationenabling mechanism for Protégé-

2000. CHISEL Research Group cortinues to refine and improve it.

8.2 FutureWork

Groupware technologies, such as instant messaging and peer-to-peer network
applications, have never been integrated into the ontology devel opment environments to
support collaborative team work. In order to fully understand the nature of thisontology
devel opment team work (by analyzing existing work flow) and to produce an early
prototype of an ontology development tool with sufficient collaboration support functions,
it will be necessary to carry out an ethnographic study on an ontology or knowledge base
devel opment project.

Based on the recommendations we have produced in this thesis, we would like to
organize an ontology development or knowledge engineering team to experimentally use
differert groupware technologies to support collaboration, and make careful observations
on the usage patterns of the different groupware technologies. The usage patterns of
instant messaging, web portals and other groupware among ontology devel opers will

shed light on the question as to what extent general purpose groupware can satisfy the

101

requirements of collaborative ontology editing and what types of other groupware need to
be devel oped to support specific collaborative ontology engineering tasks. This
experiment will also help identify an initial set of user requirements for the design of

collaborative ontology development tools.

8.3 Concluding Remarks

We believe that the need for more comprehensive collaborative support in the
ontology engineering field is growing and will emerge as an important future research
topic. This thesis takes an important step further towards understanding how groupware
technology can be leveraged to support collaborative ontology development. Combining
research fields is both exciting and challenging. We hope this work invigorates the
discussion on designing and building a comprehensive collaborative ontology
devel opment environment using advanced groupware technol ogies.

We believe that this thesis offers a road map for future ontology editing tool designers
that will help them understand the past difficulties and challenges of providing tool
support for collaborative ontology engineering, and a glimpse at some of the technologies

that may lead to future success.

102

Bibliography

[1]
[2]
[3]
[4]
[3]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

[20]
[21]
[22]
[23]

[24]
[25]

Apelon http://www.apel on.com/about/about.htm, 2003, June 19

Biz2Peer Technologies, http://www.hiz2peer.com/p2p.htm, 2003, February 2,
Bugzilla, Mozillas bug tracking system, http://bugzilla.mozilla.org/, 2003, July
14

Computer Supported Collaborative Work http://www.telekooperation. de/cscw/,
2003, June 3

Desktop collaboration: project Backgrounder. http://groove.net, March 10, 2003,
March 10, 2003

Desktop collaboration: Project Backgrounder. http://groove.ret, 2003, March 10
Drupa - Content Management System, http://www.drupal.org/, 2003, July 14
Fact Fetch Project web site http://factfetch.jxta.org/, 2003, June 11

Groove Networks http://www.groove.net, 2003, January 28

http://www.drupal .org/, 2003, June 23

Imesh http://www.imesh.com/, 2003, February 3

JXTA http://www.xta.org 2003, February 3

Knowledge Interchange Format Manual, http://www-kdl.stanford.edu/knowledge-
sharing/kif/, 2003, Sept. 17

myJXTA Project web site http://myjxta.jxta.org/servlets/ProjectHome, 2003, June
11

Ontoprise http://www.ontoprise.de/home_en.htm, http://www.mw.com/cgi-
bin/dictionary, 2003, April 25

Peer-to-Peer Working Group http://www.peer-to-peerwq.org/whatis/index.html,
2003, January 27

Protégé 2.0 Multi-User Tutorial,

http://protege.stanford.edu/doc/protege? apha/index.html, 2003, Sept 16
Protégé project, Stanford University http://protege.stanford.edu/index.html, 2003,
April 21

Shirky, C. 2001.What is P2P... and what Isn't. An article published on O'Reilly
network. http://www.openp2p.conV/Ipt/al/p2p/2000/11/24/shirky1-whatisp2p.html,
2003, February 2

Terzis, S. CSCW & Groupware.
http://www.cs.tcd.ie/Sotirios. Terzis' CSCW.html#COOCOL, 2003,

TOVE project publications http://www.eil.utoronto.ca/enterprise-
modelling/papers/index.html, http://www.mw.com/cqi-bin/dictionary, 2003,
April 25

Track+ Project Manager, http://sourceforge.net/projects/trackplus/, 2003, July 14
US National Cancer Institute, Center for Bioinformatics,
http://ncicb.nci.nih.gov/core/caBl O, 2003, July 28

W3C SVG Specification, http://www.w3.0rg/TR/SV G/intro.html, July 24

Web Ontology Language, http://www.w3.0rg/TR/2003/WD-webont-reg-
20030331/#onto-def, 2003, July 28

[26]

[27]

[28]

[29]

[30]
[31]
[32]
[33]
[34]
[39]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

103

XML.com: Ontology Building: A Survey of Editing Tools XML.com
http://www.xml.com/pub/a/2002/11/06/ontol ogies.html, 2003,

M. M. Allen, "Empirical Evaluation of a Visualization Tool for Knowledge
Engineering,” in Department of Computer Science. Victoria: University of
Victoria, 2003, pp. 109.

P. Allen, "Reguirements Engineering in a Global Software Development: A Case
Study,” University of Victoria, Victoria May 2003.

T. Allen, Managing the Flow of Technology: Technology Transfer and the
Dissemination of Technological Information Within the R&D Organization: MIT
Press, Cambridge M assachusetts, 1984.

R. P. B. Swartout, K. Knight, T. Russ, "Toward Distributed Use of Large-Scale
Ontologies," Ontological Engineering138-148, 1997.

H. Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, and lon
Stoica, "Looking Up Datain P2P Systems,” Communication of ACM, vol. 46 (2)
pp., 2003.

C. W. Barry Smith, "Ontology: Towards a New Synthesis,” ACM Press3-9, 2001.
M. Beaudouin-Lafon, Computer Supported Co-operative Work: John Wiley &
Sons, 1999.

T. Berners-Lee, James Hendler,and Ora Lassila, "The Semantic Web," Scientific
American (May) pp., 2001.

B. W. Boehm, "Spiral Model of Software Development and Enhancement,”
Software Engineering Project Management IEEE (May 1998) pp. 61-72, 1998.
U. Busbach, David Kerr,and Klaas Sikkel, "Forward of Conference Proceeding,”
presented at CSCW and the Web: An international Workshop organized by
ERCIM/WA4G, Sankt Augustin, Germany, 1996.

F. Cairncross, The Death of Distance 2.0: How the communications Revolution
Will Change Our Lives: London, Texere Publishing, 2003.

E. Carmel, and Ritu Agarwal, "Tactical Approaches for Alleviating Distance in
Global Software Development,” |EEE Software, vol. 18 (2) pp. 22-29, 2001.

B. Chandrasekaran, John R. Josephson, and V. Richard Benjamins, "What Are
Ontologies, and Why Do We Need Them?," 1EEE Intelligent Systems, Special
Issue on Ontologies, vol. 14 (January/Feburary) pp. 20-26, 1999.

S. M. Cherry, "IM Means Business," in |EEE Spectrum 39 (11), vol. 39, Nov
2002, pp. 28-32.

W. M. Cohen, Danidl Levinthal, "Absorptive Capacity: A New Perspective on
Learning and Innovation," Administrative Science Quarterly, vol. 35 (1) pp. 128-
152, 1990.

D. Coleman, Groupware: Collaborative Strategies for Corporate LANs and
Intranets San Francisco, CA: Prentice Hall PTR, 1997.

S. Cranefield, and Martin Purvis, "UML as an Ontology Modelling Language,”
presented at |JCAI'99 Workshop on Intelligent Information Integration, Sweden,
1999.

V. Devedzic, "Understanding ontological engineering,” Communications of the
ACM, val. 45 (4(April 2002)) pp. 136-144, 2002.

C. A. Ellis, S.J. Gibbs, and G.L. Rein, "Groupware: some issues and experiences,"
Communications of the ACM, vol. 34 (1, Jan 1991) pp. 39-58,, 1991.

[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]
[59]
[56]

[57]

[58]
[59]
[60]
[61]

[62]

104

D. C. Engebart, William K. Engish, "A research center for augmenting human
intellect,” presented at AFIPS Fall Joint Computer Conference, San Francisco,
CA, Dec. 1968.

J. Erngt, "Is Peer Computing Real?," presented at the 5th World Multiconference
on Systemics, Cybernetics, and Informatics, Orlando, Florida, July 2001.

J. A. Espinosa, Robert E. Kraut,Javier F. Lerch ,Sandra A. Slaughter,James D.
Herbsleb, and Audris Mockus, "Shared mental models and coordination in large-
scale, distributed software development,” presented at 22nd Annual International
Conference on Information Systems, New Orleans, Louisiana, USA, 2001.

J. Euzenat, "Building consensua knowledge bases: context and architecture,”
presented at 2nd international conference on building and sharing very large-scale
knowledge bases (KBKYS), Enschede (NL), 1995.

J. Euzenat, "Corporate Memory through Cooperative Creation of Knowledge
Bases and Hyperdocuments,” presented at 10th Knowledge Acquisition,
Modeling and Management for Knowledge-based Systems Workshop (KAW'96),,
Banff, Canada, 1996.

J. Euzenat, "HyTropes. A WWW front-end to an object knowledge management
system," presented at Actes 10th knowledge acquisition workshop demonstration
track, Banff, Canada, 1996.

J. Euzenat, "A protocol for building consensual and consistent repositories,
Research Report RR-3260, INRIA," September 1997.

A. Farquhar, Richard Fikes, and James Rice, "The Ontolingua Server: a Tool for
Collaborative Ontology Construction,” presented at 10th Knowledge Acquisition
Workshop, Banff, Canada, 1996.

H. Goldstein, "Collaboration Nation," in IEEE Spectrum 49 (6), vol. 49, June
2003, pp. 49-51.

A. GomezPérez, "Ontological Engineering,” presented at International Joint
Conference on Artificial Intelligence, Stockholm, Sweden, 1999.

L. Gong, "Project JXTA: A Technology Overview," Sun Microsystems, Inc, Palo
Alto, CA, USA 2001.

T. R. Gruber, "Toward Principles for the Design of Ontologies Used for
Knowledge Sharing," presented at International Workshop on Formal Ontology,
Padova, Italy, 1993.

J. Grudin, "Computer-Supported Cooperative Work," |EEE Computer 1994, vol.
27 (5) pp. 19-26, 1994.

J. Grudin, "Computer-Supported Cooperative Work: History and Focus," 1EEE
Computer, vol. 27 (5) pp. 19-26, 1994.

J. Grudin, "Groupware and social dynamics: eight challenges for developers,” in
Communications of the ACM, vol. 37, 1994, pp. 92-105.

M. Gruninger, Jintae Lee, "Ontology Applications and Design,” Communications
of the ACM, val. 45 (2) pp. 39-41, 2002.

N. C. Guarino, M.; Giaretta, P., "Formalizing Ontological Commitments,”
presented at 12th National Conference on Artificial Intelligence, Seattle, WA,
USA, 1994.

[63]

[64]

[69]

[66]

[67]

[68]

[69]

[70]

[71]
[72]

[73]

[74]

[79]

[76]

[77]

[78]

105

N. G. Guarino, P., "Ontologies and Knowledge Bases: Towards a Terminological
Clarification," in Towards Very Large Knowledge Bases. Knowledge Building &
Knowledge Sharing: 10S Press, 1995, pp. 25-32.

F. W. Hartel, Gilberto Fragoso, Kim L. Ong, Robert Dionne, and M.S,,
"Enhancing Quality of Retrieval Through Concept Edit History," 2003.

J. D. Herbsleb, and Audris Mockus, "An Empirical Study of Speed and
Communication in Globally- Distributed Software Development,” |EEE
Trasactions on Software Engineering, vol. 29 (6) pp., 2003.

J. D. Herbsleb, and Deependra Moitra, "Global Software Development,” IEEE
Software, vol. 18 (2) pp. 16-20, 2001.

J. D. Herbsleb, and Rebecca E. Grinter, "Architectures,Coordination, and
Distance: Conway’s Law and Beyond," |EEE Software (September/October) pp.
63-70, 1999.

J. D. Herbsleb, and Rebecca E. Grinter, "Splitting the organization and integrating
the Code: Conway's Law Revisited," presented at 21st International Confererce of
Software Engineering (ICSE'99), Los Angeles, CA, USA, 1999.

J. D. Herbgeb, Audris Mockus, Thomas A. Finholt, and Rebecca E. Grinter,
"Distance, Dependencies, and Delay in a Global Collaboration," presented at
2000 ACM conference on Computer supported cooperative work, Philadelphia,
Pennsylvania, United States, 2000.

C. W. Holsapple, and K.D. Joshi, "A collaborative approach to ontology design,”
Communications of the ACM, val. 45 (2) pp. 42-47, 2002.

IBM, Lotus Notes official web site, www.lotus.com, 2003, Oct. 11

E. Isaacs, Alan Walendowski, Steve Whittaker, Diane J. Schiano and Candace
Kamm, "The Character, Functions, and Styles of Instant Messaging in the
Workplace," presented at Conference on Computer Supported Cooperative Work,
New Orleans, Louisiana, USA, Nov. 16-20 2002.

N. R. S. Jenifer Tennison, "APECKS: A tool to support living ontologies,"
presented at 11th Knowledge Acquisition Workshop (KAW'98), Banff, Canada,
1998.

Y. R. Jenny Preece, Helen Sharp, David Benyon, Simon Holland, Tom Carey,
Human-Computer Interaction: AddisonWesley Publising Company, 1994.

R. Kraut, Egido, C., and Galegher, J., "Patterns of contact and communication in
scientific research collaboration,” presented at Conference on Computer-
Supported Cooperative Work (CSCW '88), Seattle, Washington, USA, 1998.

G. Lawton, "Knowledge Management: Ready for Prime Time?," |EEE Computer,
vol. 34 (2) pp. 12-14, 2001.

F. Lopez M., "Overview Of Methodologies For Building Ontologies,” presented
at 1JCAI-99 workshop on Ontologies and Problem Solving Methods (KRR5),
Stockholm,Sweden, 1999.

M. M. Margaret-Anne Storey, John Silva, and N. E. Casey Best, Ray Fergerson,
Natasha Noy, "Jambalaya: Interactive visualization to enhance ontology authoring
and knowledge acquisition in Protégé," presented at Workshop on Interactive
Tools for Knowledge Capture, K-CAP-2001, Victoria, BC, Canada, 2001.

[79]

[80]

[81]

[82]

[83]

[84]

[89]

[86]

[87]

[88]

[89]

[90]

[91]
[92]

[93]

[94]

106

A. G.-P. Mariano Fernandez, Natalia Juristo, "Methontology: From ontol ogical
art toward ontological engineering," presented at Spring Symposium Series,
Stanford University, Stanford, CA, 1997.

J. D. H. Mark Handel, "What is Chat Doing in the Workplace?," presented at
Conference on Computer Supported Cooperative Work, New Orleans, Louisiana,
USA, Nov. 16-20 2002.

D. L. McGuinness, "Conceptual Modeling for Distributed Ontology
Environments,”" presented at Eighth International Conference on Conceptual
Structures Logical, Linguistic, and Computational Issues, Darmstadt, Germany,
2000.

D. L. McGuinness, "Ontologies Come of Age," in Spinning the Semantic Web:
Bringing the World Wide Web to Its Full Potential, J. i. H. Dieter Fensel, Henry
Lieberman, and Wolfgang Wahlster, Ed. Massachusetts: MIT Press, 2002.

D. L. McGuinness, Richard Fikes, James Rice, Steve Wilder, "The Chimaera
Ontology Environment," presented at the Seventeenth National Conference on
Artificia Intelligence (AAAI 2000). Austin, Texas, US, 2000.

I. R. Mikael Lindvall, Sachin Suman Sinha, "Technology Support for Knowledge
Management," presented at Fourth Workshop on Learning Software organizations
(LSO), Chicago, Illinois, USA, 2002.

D. S. Milgjicic, Vana Kaogeraki, Rajan Lukose,, J. P. Kiran Nagaraja, Bruno
Richard,, and a. Z. X. Sami Rollins "Peer-to-Peer Computing,” Hewlett-Packard
Company, HP Laboratories Palo Alto March 8th , 2002 March 8th , 2002.

B. Nardi, Vicki O'Day, Information Ecologies: Using Technology with Heart.
Massachusetts, USA: MIT Press, 1999.

M. S. Natalya F. Noy, Stefan Decker, Monica Crubézy, Ray W. Fergerson, and
and M. A. Musen, "Creating Semantic Web Contents with Protége-2000," |IEEE
Intelligent Systems (March/April) pp. 60-71, 2001.

M. S. Natalya F. Noy, Stefan Decker, Monica Crubézy, Ray W. Fergerson, Mark
A. Musen, "Creating Semantic Web Contents with Protégé-2000," IEEE
Intelligent Systems, vol. 16 (2) pp. 60-71, 2001.

C. D. H. Natalya Fridman Noy, "The State of the Art in Ontology Design," Al
Magazine, vol. 18 (3) pp. 53-74, 1997.

R. W. F. Natalya Fridman Noy, Mark A. Musen, "The knowledge model of
Protege-2000: Combining interoperability and flexibility,” presented at 2th
International Conference on Knowledge Engineering and Knowledge
Management (EKAW'2000), Juanles-Pins, France, 2000.

R. F. Neches, R; Finin, T.; Gruber, T.; Patil, R.; Senator, T.; Swartout, W.R.,
"Enabling Technology for Knowledge Sharing.," Al Magazine36-56, 1991.

G. Pérez, "Towards a Framework to Verify Knowledge Sharing Technology," in
Expert System With Applications, vol. 11, 1996, pp. 519-529.

D. Perrin, "Prompt-Viz: A Visuaization Tool for Exploring the Differences
Between Ontology Versions.," in Department of Computer Science. Victoria
University of Victoria, 2003.

T. G. Peter D. Karp, "The Generic Frame Protocol," presented at 14th
International Joint Conference on Artificial Intelligence, Montreal, Canada, 1995.

[99]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]
[105]

[106]

107

J. Peters, "The Hundred Y ears War Started Today: An exploration of electronic
peer review," Journal of Electronic Publishing, University of Michigan Press,
1996.

J. D. H. Rebecca E. Grinter, Dewayne E. Perry, "The Geography of Coordination:
Dealing with Distance in R&D Work," presented at 23rd international conference
on Software Engineering, Toronto, Ontario, Canada, 2001.

G. G. Ricardo A. Falbo, Katia C. Duarte, Ana Candida C. Natali, "Developing
Software for and with Reuse: An Ontological Approach,” presented at ACIS
International Conference on Computer Science, Software Engineering,
Information Technology, e-Business, and Applications, Foz do Iguacu, Brazil,
2002.

J. Rice, Adam Farquhr, Philippe Piernot, and Thomas Gruber, "Using the Web
Instead of a Window System,” presented at Computer Human Interaction
Conference, Vancouver, Canada, 1996.

W. W. Royce, "Managing the development of large software systems. concepts
and techniques,” presented at International Conference on Software Engineering,
Monterey, California, United States, 1987.

J. M. Schraagen, and Peter C. Rasker, "Communication in Command and Control
teams," presented at The 6th International Command and Control Research and
Technology Symposium, the United States Naval Academy (USNA) in Annapolis,
Mayland, 2001.

M.-A. Storey, K. Wong, F.D. Fracchia, and H.A. M uller, "On Integrating
Visualization Techniques for Effective Software Exploration.,” presented at
InfoVis1997, Phoenix, USA, 1997.

Y. Sure, Michael Erdmann, Juergen Angele, Steffen Staab,Rudi Studer, Dirk
Wenke, "OntoEdit:Collaborative ontology development for the semantic web,"
presented at International Semantic Web Conference 2002 (ISWC 2002), Sardinia,
Italy, 2002.

B. Traversat, Mohamed Abdelaziz, and J.-C. H. Mike Duigou, Eric Pouyoul and
Bill Yeager, "Project JXTA Virtual Network,” Sun Microsystems, Inc, Palo Alto,
CA, USA 2002.

J. Udell, Practical Internet Groupware: O'Reilly, 1999.

M. Uschold, "Building Ontologies: Towards Unified Methodology," presented at
the 16th Annual conference of the British Computer Society Specialist Group on
Expert Systems, Cambridge, UK, 1996.

M. Uschold, and Michael Gruninger, "Ontologies:Principles, Methods and
Applications,” Knowledge Engineering Review, vol. 11 (2) pp., 1996.

Appendix A

Table 8: Table of ontologies developed using different methodologies. (Some methdologies are identified by the name of the designers.)

M ethodology Time Domain Ontology developed Applicationsthat use the developed ontology
Uschold and King | 1995-96 Enterprise Modeling | Enterprise Ontology Enterprise Toolset
Gruninger and Fox | 1995-96 Business processes TOVE ontology = Enterprise Design Workbench,
and activities = Integrated Supply Chain Management
modeling Project Agents
Bernaras 1996 Electrica network Severa ontologies for KACTUS toolkit, an interactive environment
electrical system for browsing, editing and managing (libraries
of) ontologies.
Methontology 1998 Chemical CHEMICALS = Chemica OntoAgent
Scientific research Environmental pollutants | = An ontology-based web broker
ontologies
SESUS 1997 Natural language SENSUS Knowledge-based application for air campaign

processing

planning

