

Industrial Strength Ontology
Management

Aseem Das1, Wei Wu1 & Deborah L. McGuinness2

1VerticalNet Inc., {adas, wwu}@verticalnet.com
2Knowledge Systems Laboratory, Stanford University, dlm@ksl.stanford.edu

Abstract. Ontologies are becoming increasingly prevalent and
important in a wide range of e-commerce applications. E-commerce
applications are using ontologies to support parametric searches,
enhanced navigation and browsing, interoperable heterogeneous
information systems, supplier enablement, configuration management,
and transaction discovery. Applications such as information and
service discovery and autonomous agents that are built on top of the
emerging Semantic Web for the WWW also require extensive use of
ontologies. Ontology-enhanced commercial applications, such as these
and others require ontology management that is scalable (supporting
thousands of simultaneous distributed users), available (running
365x24x7), fast, and reliable. This level of ontology management is
necessary not only for the initial development and maintenance of
ontologies, but is essential during deployment, when scalability,
availability, reliability and performance are absolutely critical.
VerticalNet’s Ontology Builder and Ontology Server products are
specifically designed to provide the ontology management
infrastructure needed for e-commerce applications. These tools bring
the best ontology and knowledge representation practices together with
the best enterprise solutions architecture to provide a robust and
scalable ontology management solution.

1 Introduction

Ontology Builder and Ontology Server were developed in response to the business needs
for ontologies in VerticalNet’s e-commerce and B2B applications. They provide a
scalable and distributed ontology environment, which is a component critical to the
success of e-commerce applications. More broadly, however, this component is also
critical to the success of any architecture, which leverages background information, such
as the Semantic Web. The next generation web – commonly referred to as the Semantic
Web – obtains its power and “intelligence” from utilizing markup information on content
sources along with background information on terms and content. The success of such an
endeavor relies on environments that support creation and maintenance of background

information, while working in a broadly distributed environment like the web. Ontology
Builder/Server provide such an environment in an industrial strength implementation.
 Vertical Net currently hosts 59 industry-specific e-marketplaces that span diverse
industries such as manufacturing, communications, energy, and healthcare. Each e-
marketplace acts as an industry-specific comprehensive resource that provides businesses
and professionals with information on products, technology, industry regulations, and
news and allows buyers and sellers to exchange information, source, buy, and sell
products.
 The primary challenge in developing these e-marketplaces is integrating the disparate
sources of information in a way that presents buyers with a single, coherent browsing and
navigation experience that includes contextually relevant information from all of the
available sources. Suppliers have to be able to display their products on the e-marketplace
in a way that enables buyers to purchase electronically, even though the suppliers
maintain their product databases and availability and price information in their own
vocabulary. For example, different suppliers might use the terms memory device,
passives, and RAM to refer the same product and have very different internal
vocabularies.
 The use of ontologies was seen as the best solution not only to solve these particular
problems [18, 19], but also to provide a common knowledge infrastructure for other e-
commerce applications like service discovery, auctions, and request for proposal. Most
of VerticalNet’s e-commerce applications are now knowledge-enabled and use ontologies
to drive their services.

2 Requirements

An extensive requirement gathering process was undertaken to compile requirements for
VerticalNet’s ontology management solutions. We identified the following key
requirements for ontology management for VerticalNet:

1 Scalability, Availability, Reliability and Performance – These were considered
essential for any ontology management solution in the commercial industrial
space, both during the development and maintenance phase and the ontology
deployment phase. The ontology management solution needed to allow distributed
development of large-scale ontologies concurrently and collaboratively by multiple
users with a high level of reliability and performance. For the deployment phase,
this requirement was considered to be even more important. Applications
accessing ontological data need to be up 365x24x7, support thousands of
concurrent users, and be both reliable and fast.

2 Ease of Use – The ontology development and maintenance process had to be
simple, and the tools usable by ontologists as well as domain experts and business
analysts.

3 Extensible and Flexible Knowledge Representation – The knowledge model
needed to incorporate the best knowledge representation practices available in the
industry and be flexible and extensible enough to easily incorporate new
representational features and incorporate and interoperate with different knowledge
models such as RDF(S) [2, 15] or DAML [11]/DAML+OIL [8].

4 Distributed Multi-User Collaboration – Collaboration was seen as a key to
knowledge sharing and building. Ontologists, domain experts, and business
analysts need a tool that allows them to work collaboratively to create and
maintain ontologies even if they work in different geographic locations.

5 Security Management – The system needed to be secure to protect the integrity of
the data, prevent unauthorized access, and support multiple access levels.
Supporting different levels of access for different types of users would protect the
integrity of data while providing an effective means of partitioning tasks and
controlling changes.

6 Difference and Merging – Merging facilitates knowledge reuse and sharing by
enabling existing knowledge to be easily incorporated into an ontology. The
ability to merge ontologies is also needed during the ontology development
process to integrate versions created by different individuals into a single,
consistent ontology.

7 XML interfaces – Because XML is becoming widely-used for supporting
interoperability and sharing information between applications, the ontology
solution needed to provide XML interfaces to enable interaction and
interoperability with other applications.

8 Internationalization – The World Wide Web enables a global marketplace and e-
commerce applications using ontological data have to serve users around the
world. The ontology management solution needed to allow users to create
ontologies in different languages and support the display or retrieval of ontologies
using different locales based on the user’s geographical location. (For example, the
transportation ontology would be displayed in Japanese, French, German, or
English depending on the geographical locale of the user.)

9 Versioning – Since ontologies continue to change and evolve, a versioning system
for ontologies is critical. As an ontology changes over time, applications need to
know what version of the ontology they are accessing and how it has changed from
one version to another so that they can perform accordingly. (For example, if a
supplier’s database is mapped to a particular version of an ontology and the
ontology changes, the database needs to be remapped to the updated ontology,
either manually or using an automated tool.)

 The requirements of scalability, reliability, availability, security, internationalization
and versioning were considered to be the most important for an industrial strength
ontology management solution.

3 Existing Ontology Environments

Given the above requirements, several existing ontology management environments were
evaluated1:

1 The evaluation was done in Fall’99 and hence does not include ontology management environments such
as OntoEdit (http://www.ontoprise.de), WebODE (http://delicias.dia.fi.upm.es/webODE/), and OILEd
(http://img.cs.man.ac.uk/oil/), which were available for use after Fall’99.

• Ontolingua/Chimaera [6, 16]
• Protégé/PROMPT [10, 20]
• WebOnto/Tadzebao [4]
• OntoSaurus, a web browser for Loom [12] (http://www.isi.edu/isd/ontosaurus.html)

 Some of these environments have already been compared based on different criteria
than those formulated at VerticalNet [5]. Figure 1, shows a feature set matrix and our
evaluation2 of the tools based on VerticalNet’s requirements. To keep the evaluation
simple, a three level (+, 0, -) scale was used, where (+) indicates a requirement was
surpassed, (0) indicates the requirement was met and (-) indicates that the tool failed to
meet the requirement. Although, none of the existing ontology development
environments provide all of the required features, they are nevertheless strong in
particular features and have different but very expressive underlying knowledge
representation models.

 Scalable

Available
Reliable

Ease of
Use

Knowledge
Representation

Multi User
Collaboration

Security
Management

Diff
&
Merge

International
ization

Versioning

Ontolingua/
Chimaera

- - + 0 - + - -

Protégé/
PROMPT

- 0 + - - + - -

OntoWeb/
Tadzebao

- 0 + + - - - -

OntoSaurus/
Loom

- - + 0 - - - -

Figure 1: Comparison of Some Ontology Environments

 Ontolingua provides a very powerful and expressive representation with its frame
language and its support for KIF [9] – a first order logic representation. In combination
with its theorem prover (ATP), Ontolingua provides extensive reasoning capabilities and
with Chimaera [16], it supports ontology merging and diagnostics. Ontolingua also
provides expressive and operational power not found in other environments such as
support for generating and modifying disjoint covering partitions of classes.
 WebOnto/Tadzebao provides very rich collaborative support for browsing, creating
and editing ontologies, together with the ability to collaboratively annotate and hold
synchronous and asynchronous ontology related discussions using the Tadzebao tool.
 OntoSaurus provides a graphical hyperlinked interface to Loom knowledge bases.
Loom provides expressive knowledge representation, automatic consistency checking
and deductive support via its deductive engine – the classifier.
 Protégé is the easiest to use and supports the construction of knowledge-acquisition
interfaces based on ontological data. It also has a component framework for easily
integrating other components via plugins. Protégé already provides several plugins
including PAL, a first order logical language for expressing constraints, and
SMART/PROMPT [20], a tool for merging and alignment of ontologies

2 This was not a formal evaluation with published, unambiguous evaluation criteria. It was however a good
faith effort to evaluate VerticalNet requirements as understood in the various tools.

http://www.isi.edu/isd/ontosaurus.html
http://delicias.dia.fi.upm.es/webODE/

 However, despite their strengths, all of the ontology solutions fell short on the
scalability, reliability, and performance requirements, perhaps because industrial strength,
commercial scalability was not seen as a important aspect of ontology management since
most of the ontology usage until recently has been restricted to research and academia.
Also, none of the tools provided security, internationalization, or versioning support –
requirements considered critical for e-commerce applications.
 After evaluating these solutions against our requirements, we decided to build our own
ontology management solution with the goal of bringing the best ontology and
knowledge representation practices together with the best enterprise solutions
architecture to satisfy the requirements of ontology-driven e-commerce applications.

4 Ontology Builder

Ontology Builder is a multi-user collaborative ontology generation and maintenance tool
designed to incorporate the best features of existing ontology toolkits in order to provide
a simple, powerful and yet broadly usable tool. Ontology Builder uses a frame-based
representation based on the OKBC Knowledge Model [3]. OKBC was developed
recognizing the wide general acceptance of frame-based systems [13] and provides an
API (Applications Programming Interface) for frame-like systems. Written entirely in
Java, Ontology Builder can run on multiple platforms. It is based on the J2EE (Java 2
Enterprise Edition) platform (http://java.sun.com/j2ee), which is a standard for
implementing and deploying enterprise applications. Ontology Builder also provides:

• Import and export based on XOL (XML-based Ontology Exchange Language)
[14]3

• A verification engine designed to maintain consistency of terms stated in the
language

• A role-based security model for data security and ontology access
• An ontological difference and merging engine

3 At the time of design and development, a DAML option did not exist. Today there are plans to support
DAML+OIL and RDF as well.

http://java.sun.com/j2ee

Figure 2: Ontology Builder Main Screen

4.1 Architecture

Ontology Builder is based on the J2EE (Java 2 Enterprise Edition) platform, a standard
for implementing and deploying “enterprise” applications. The term “enterprise” implies
highly-scalable, highly-available, highly-reliable, highly-secure, transactional, distributed
applications. The J2EE technology is designed to support the rigorous demands of large-
scale, distributed, mission-critical application systems and provides support for multi-tier
application architecture. Multi-tier applications are typically configured to include:

• A client tier to provide the user interface
• One or more middle-tier modules that provide client services and business logic for

an application
• A backend enterprise information system data tier that provides data management

 The client tier is a very “thin” tier, that contains only presentation logic. The business
and data logic are usually partitioned into separate components and deployed on one or
more application servers. This partitioning of the application into multiple server
components allows components to be easily replicated and distributed across the system,
ensuring scalability, availability, reliability and performance.
 Central to the J2EE platform architecture are application servers, which encapsulate
the business and data logic and provide runtime support for responding to client requests,
automated support for transactions, security, persistence, resource allocation, life-cycle
management, and as well as lookup and other services.

 Ontology Builder uses a 4-tier architecture comprised of a presentation tier, web tier,
service tier, and data tier. This architecture, shown in Figure 3, can be deployed using a
single application server. The application server encapsulates the service tier, which
consists of the business and data logic. A single server can support many simultaneous
connections and multiple servers can be easily clustered as needed for scalability, load
balancing, and fault tolerance. Within the presentation tier, a client can be either a Java
applet or application. The clients have easy-to-use interfaces written using the Java
Swing APIs. Both applet and application-based clients communicate with the web tier
via the HTTP protocol. The web-tier communicates with the service tier using RMI
(Java Remote Method Invocation) (http://java.sun.com/products/rmi-iiop/index.html).
The service tier communicates with the data tier through the JDBC (Java Data Base
Connectivity) protocol (http://java.sun.com/products/jdbc). Collaboration is
implemented using a JSDT (Java Shared Data Toolkit) server
(http://java.sun.com/products/java-media/jsdt), which forwards all communication and
change events to the respective clients.

Figure 3: The Architecture of Ontology Builder

4.2 Knowledge Representation

Ontology Builder uses an object-oriented knowledge representation model based on and
compatible with the OKBC knowledge model and is designed to use the best practices
from other frame-based systems. Ontology Builder implementation supports the OKBC
operations on classes, slots, facets, and individuals. Currently, however, no external
interfaces are exposed to enable other knowledge systems to use Ontology Builder as an
OKBC compliant server. Interoperability, knowledge sharing, and reuse are important
goals and our future plans call for making Ontology Builder work as a fully compliant
OKBC server.
 Ontology Builder supports a metaclass architecture to allow the introduction of
flexible and customizable behaviors into an ontology. This could potentially be used for
incorporating other knowledge models or extending the existing knowledge model within
Ontology Builder. Ontology Builder predefines certain system constants, classes, and

http://java.sun.com/products/rmi-iiop/index.html
http://java.sun.com/products/jdbc
http://java.sun.com/products/java-media/jsdt

primitives in a default upper ontology, which can be extended or refined to change the
knowledge model and behaviors within the system. The main predefined concepts are:

• CLASS - the default metaclass for all classes, CLASS is an instance of itself
• SLOT – the default metaclass for all slots and an instance of CLASS
• T – the root in the default upper ontology (sometimes referred to as THING in

other ontologies)
• INDIVIDUAL – the class of ground objects. Operationally, every entity that is not

a class is an instance of INDIVIDUAL.4
• Predefined slots – slot-minimum-cardinality, slot-maximum-cardinality, slot-

value-type, slot-value-range and domain. These are template slots on the class
SLOT.

• Predefined facets– minimum-cardinality, maximum-cardinality, value-type, value-
range and documentation-in-frame. These define the specific values for the slot as
associated with either a class or a slot frame.

• Predefined primitive data types – boolean, string, integer, float, date, etc.

 An ontology is composed of classes, slots, individuals and facets, which are all
implemented as frames. Ontology itself is also defined as a frame and contains
information such as author, date created and documentation. Both classes and slots
support multiple-inheritance in an Ontology Builder ontology.
 Classes are all instances of the metaclass CLASS by default, which is changeable by
the user. Classes can be instances of multiple metaclasses and they may be subclasses of
multiple superclasses.
 Slots are defined independently of any class and are instances of the metaclass SLOT
by default, which is also changeable by the user. They can also be instances of multiple
metaclasses and parent classes. Like classes, slots also support a multiple-inheritance
hierarchy. Slot hierarchies can be used to model naturally hierarchical relationships
between terms. For example, you might need to model the notion of price along with the
subrelations of wholesale-price, retail-price, and discount-price.
 Slots can be attached to a class frame or a slot frame, as slots are themselves first-class
objects and when attached describe the properties of the frame. A slot can be attached
either as a template slot or as an own slot. Own slots cannot be directly attached to a
frame, but are acquired by the frame (class, slot or individual) being an instance of
another class. Template slots can be directly attached to either a class or a slot frame.
The domain own slot (acquired by a slot frame from being an instance of class SLOT) is
useful for limiting the applicability of the slot only to the specified domain class and its
subclasses. If a slot does not define a domain, it can be applied to all classes in an
ontology. This flexibility is often useful during the early stage of ontology development
when the slots used in an ontology are still being refined. Later however, it is often
useful to define a domain for slots so that they are only used in specific contexts.
 Facets specify the specific values for a slot-class or a slot-slot association. A facet is
considered associated with a frame-slot pair, if the facet has a value for that association.
The predefined facets (value-type, value-range, minimum-cardinality, maximum-

4 Note: Slots and facets are instances of CLASSES. Currently, all entities are either CLASSES or
INDIVIDUALS but for extensibility, we are not stating that INDIVIDUALS and CLASSES form a
covering partition for all things.

cardinality etc.) hold the values given to a slot’s own slots (slot-value-type, slot-value-
range, etc.) when the slot is associated with a frame. The facet values can only be a
specialization of the slot frame’s own slot values. For example, if slot color is defined to
have a slot-value-type of “color”, when it’s attached to a frame, the value can only be
changed to a specialization of “color”, “rgbcolor” or “hsvcolor”. If the value is changed,
then the “value-type” facet will hold the changed value. In addition to predefined facets,
Ontology Builder supports the creation and use of user-defined facets. A user-defined
facet can be created and attached to a slot when the slot is attached to a frame. For
example, a user-defined facet might be used to specify whether or not a slot is
“displayable”.

4.3 Ontology Inclusion (Uses Relationship)

Ontology construction is time consuming and expensive. To lower development and
maintenance cost, it is beneficial to build reusable and modular ontologies so that new
ontologies can be created and assembled quickly by mixing and matching existing
validated ontologies. Both Ontolingua and Protégé have the capability to include
ontologies for the purpose of reuse [7, 22]. Protégé allows projects to be included, but
the included projects cannot be easily removed and no duplicated names can exist across
projects used (included projects plus the current working project) due to the requirement
that names must be unique. This unique name requirement in Protégé is limiting because
duplicate names occur in practice. Ontolingua provides facilities that allow flexible
combination of axioms and definitions of multiple ontologies. Ontolingua eliminates
symbol conflicts among ontologies in its internal representation by providing a local
name space for symbols defined in each ontology.
 Ontology Builder supports concepts reuse and ontology inclusion through the “uses”
relationship. The “uses” relationship allows all classes, instances, slots, and facets from
the included ontology to be visible and used by an ontology. For example, if ontology A
“uses” ontology B, all of the concepts defined in ontology B (classes, instances, slots and
facets) can be referenced from ontology A. A class in ontology A can be a subclass of a
class in ontology B, and any class in A can use any slots defined in ontology B. The
“uses” relationship can be added or removed easily from an ontology. When a “uses”
relationship is removed, inconsistencies might exist in the current working ontology
because concepts defined in the removed “uses” ontology still are being referenced, even
though the ontology is not being used. Changes made to an ontology are propagated in
real-time to all ontologies that use that ontology. Although this ensures that the latest
concepts are available for use, it might also cause inconsistencies. Verification can be
performed to diagnose and identify frames that have inconsistencies
 The “uses” relationship is transitive. If ontology A “uses” ontology B, and ontology B
“uses” ontology C, then ontology A “uses” ontology C automatically. Ontology Builder
also allows cyclical “uses” relationship, that is ontologies A and B can both use each
other. Concepts are unambiguously identified by using a globally unique identifier that is
generated automatically when a concept is first created; or by using a fully qualified
name. A fully qualified name is the concept name concatenated together with the “@”
and the ontology name. For example, car@transportation. The fully qualified name is
guaranteed to be unique as a concept name is enforced to be to be unique within a

mailto:car@transportation

specific ontology and ontology names are unique across all ontologies in the knowledge
base. The fully qualified names are used automatically when working with concepts in
ontologies other than the ontology where they are initially defined.

4.4 Data Storage and Knowledge-Relational Mapping

Knowledge-base systems traditionally used the computer’s main memory for storing the
knowledge needed at run-time. The amount of information that can be stored is limited
by the available memory and there might be an initial delay in loading all of the entities
into memory from a flat file. Moreover, the storing of the knowledge model in flat files
is not secure, is error-prone, and quickly becomes unmanageable as the size of the
knowledge base increases. Object-Oriented Database Systems (OODS) can also be used
to store the knowledge model and provide superior modeling for representing the
relations and hierarchies within an ontology. However, when compared to relational
DBMS (RDBMS), OODS lack in performance, enterprise usage and acceptance,
internationalization support, and other features. RDBMS are still the storage mechanism
of choice in enterprise computing when it comes to storing large amounts of
performance-critical data. RDBMS can store gigabytes of data, search several million
rows of data extremely quickly, and also support data replication and redundancy.
 Ontology Builder uses an enterprise-class RDBMS so that very large-scale ontologies
and large numbers of ontologies can be stored and retrieved quickly and efficiently.
Several other knowledge based systems SOPHIA [1] and an environment for large
ontologies motivated by PARKA [23] have also used RDBMS for these and other similar
reasons. Ontology Builder currently supports the Oracle 8 and Microsoft SQL Server
RDBMSs for data storage.
 Ontology Builder employs a sophisticated database schema to represent the OKBC
based knowledge model and can support all OKBC-defined operations that could be
performed on classes, instances, slots and facets, as well as the operations specified by
the OKBC ask/tell interface. The multiple-table database schema also supports
internationalization, which permits ontologies to be developed in any language. Multiple
translations of the same ontology can coexist in the same database and can be used to
view the same ontology in different locales. The schema is normalized; each piece of
information is stored in only one location so that modifications to a concept are
automatically propagated to all entities that use that concept.
 Knowledge-relational mapping is accomplished via a high-performance persistence
layer that converts relational data to and from in-memory Java objects that represent the
different entities and relationships of the knowledge model. Information retrieval is
optimized to retrieve information about multiple concepts via one JDBC database call,
which dramatically improves performance. Moreover, a lazy-loading algorithm is used
to retrieve information on an as-need basis. For example, when an ontology is first
loaded, only the classes and the class hierarchy are loaded; attached slots, slot values, and
facet values are only loaded when a user decides to browse or edit a particular class.

4.5 Multi User Collaboration & Locking

Ontology construction is often a collaborative endeavor where the participants in the
ontology building process share their knowledge to come to a common understanding and
representation of the ontology. These participants might be geographically separated and
for collaboration require the ability to hold discussions and view the changes made to the
ontology by other collaborators. Ontology Builder provides this type of multi-user
collaborative environment. Collaborators can hold discussions individually or in a group
and see changes made to the ontology by other collaborators in real time.
 Collaboration is implemented via the Java Data Shared Toolkit (JSDT), which
provides the communication, messaging, and session management infrastructure for
collaboration within Ontology Builder. As they log into the system, each user is
registered with the JSDT server in a default “global” discussion room. Messages sent by
any user in this discussion room are received by all other current users of the system.
Each ontology also defines its own discussion room, which is created the first time any
user opens the ontology for browsing or editing. Users who open the same ontology are
added to that ontology’s discussion room automatically and can see the messages from
and collaborate with other users within that ontology’s discussion room. A user can also
open a private chat session with any other user who is logged on to the system.
 Edits to any ontology in the system are broadcasted to all users, regardless of their
interest. The change record indicates the type of edit operation, the affected concept and
ontology, and the user who performed the action. Figure 4 is a snapshot of the
collaboration window that shows the system log and a discussion between collaborators.
Any changes to the ontology are committed to the database immediately, so that the
changes are available to all other users in real time. An icon is displayed automatically
next to the concepts within an open ontology that have been modified by other users,
indicating to the user that the information currently displayed in the Ontology Builder
client is no longer accurate. The user might already know what has changed based on the
discussion with other collaborators or can look in the system messages to see exactly
what was changed in the affected concept. An ontology can be refreshed at any point to
retrieve the latest state.
 Since multiple collaborators can make changes to the same ontology, some kind of
locking scheme is necessary to prevent users from overwriting each other’s changes.
Ontology Builder uses a pessimistic locking strategy that requires an explicit lock to be
acquired by a collaborator before any edits are allowed to a concept. Explicitly locking a
concept implicitly locks all of the parents and children of the locked concept, preventing
other users from editing either the children or the parents of the locked node. Explicitly
locking a concept still allows other users to edit the siblings of the locked concept.
Locked concepts are shown with a locked icon in all of the clients, indicating which
concepts are currently being edited. This locking strategy enables multi-user
collaboration and reduces inconsistencies generated from multiple collaborators working
on the same ontology.

Figure 4: Collaboration Window in Ontology Builder

4.6 Verification

Ontology Builder provides a verification engine to resolve any inconsistencies that might
have been introduced during the ontology development and maintenance process.
Maintaining consistency is not only critical during the development process where a
particular ontology might “use” other ontologies, it is even more critical during the
deployment phase where the ontologies have to be valid and consistent so that they can
be used by applications without any errors. Real-time verification is a fairly complex
task and requires a truth maintenance system (TMS) of some sort in order to have
acceptable performance. If a TMS is not used, thorough checks of all of the elements of
the ontology need to be done, which is not acceptable from a performance perspective.
Ontology Builder does some real-time verification during the edit/creation process itself
(for example, it checks for value-type and cardinality violations), but for a full
consistency check, the verification engine needs to be explicitly invoked by the user. The
verification engine checks for:

• Cycles
• Domain of slots is valid for the classes to which they are attached

• Minimum cardinality <= maximum cardinality
• Minimum cardinality <= num of values <= maximum cardinality
• Values are of specified value-types
• Undefined symbols – symbols that are being used but not defined in the current

ontology or any of the ontologies it uses
• Attached slots are consistent with the slot definition (Specialization of value-types,

value-ranges and cardinalities is checked for consistency)

4.7 Difference & Merging

Merging ontologies becomes necessary when there is a need to consolidate concepts
defined in multiple ontologies, often developed by different teams or gathered from
various sources, into a consistent and unified ontology that can be deployed with e-
commerce applications. Because the general task of merging ontologies can become
arbitrarily difficult, extensive human intervention and negotiation are required. Chimaera
[17] and PROMPT [21] provide semi-automated tools to facilitate the merging process.
The merging tools in Chimaera and PROMPT suggest a list of merging candidates and
present available operations on the candidate frames. Once a user finishes a particular
merge operation, more suggestions could be generated and the tool guides the users to
finish the merging process. Chimaera also provides diagnostics on the results of merging
and other ontology modifications.
 Ontology Builder follows a different path in that the initial list of merging candidate
frames is not generated. Instead, Ontology Builder relies on the user to decide where to
start the merging process. Essentially the user determines when two concepts mean the
same thing semantically. The rationale behind the decision is that in practice a user often
knows the structures and contents of the ontologies to be merged, and thus has the
knowledge to determine where to start the merging process. The goal of the difference
and merge service in Ontology Builder is to speed up the merge process once the initial
merging candidate frames have been chosen, rather than being a general-purpose merging
tool like those provided by Chimaera and PROMPT.
 In Ontology Builder, the merge operation does not generate a third ontology that
contains the merged results from two input ontologies. Instead, Ontology Builder defines
a base ontology and merge ontology where the differences between the two ontologies
can be initially identified and then, if desired, the differences can be merged into the base
ontology.
 Ontology Builder currently has a simplistic algorithm for reporting the differences
between two ontologies. Differences are reported for the two concepts selected for
comparison as well as for their children that have matching names. If there are no
matching names, the differencing stops. Ontology Builder reports the following
differences:

• Missing children/parents
• Missing slots
• Value, value-type, value-range, domain, documentation, and cardinality

differences for matched concepts

If desired, the differences can be merged. The merge operation

• Copies missing children recursively to the base ontology
• Copies missing slots to the base ontology
• Merges documentation, slot values, value-types, value-ranges and cardinalities for

the matched concepts

 The difference and merge feature of Ontology Builder is simple compared to the
merging features available in other tools like PROMPT or Chimaera, but future plans call
for enhancing this functionality based on further requirements and proposed usage.

4.8 Role Based Security

Ontology Builder provides a flexible security model designed to allow client access to the
back-end services. Every user has an account on the system and is only allowed to access
the back-end services if properly authenticated. Each user is assigned a role, which
denotes the level of access for ontology management. Users assigned a particular role
can only perform the operations allowed by that role, however, users can be assigned
different roles for different ontologies. The security model also enables a much finer-
grained permissions system where individual edit operations in an ontology (such as
modify-documentation) can be enabled for particular users.
 By protecting ontology data and controlling access to back-end services, Ontology
Builder’s security model meets one of the critical requirements for enterprise class
applications.

4.9 Internationalization

Ontology Builder is fully internationalized and can support the browsing and editing of
ontologies in multiple locales. A single representation of the ontology is maintained for
all locales. Names from each of the locales are linked to this one representation so that
changes in ontology structure in one locale are propagated and available in all the other
locales. Concepts, which have not been translated in a particular locale, are shown in the
locale in which they were initially created. For example, if the ontology was initially
created in English and then partially translated into Japanese, browsing it in Japanese will
show the names in English for the concepts that have not yet been translated. Ontology
Builder also provides support for translating from one locale into another locale. Hooks
are provided to use a translation tool or service if desired to semi-automate the translation
process. The snapshot in Figure 5 shows a Japanese ontology with some untranslated
words in English and French.

Figure 5: Ontology creation in Japanese

4.10 Import & Export

Ontology Builder provides import and export functionality based on XOL (XML based
Ontology Exchange Language) [14]. XOL is based on OKBC-Lite, a simplified form of
the OKBC knowledge model, and is “designed to provide a mechanism for encoding
ontologies within a flat file that may be easily published on the WWW for exchange
among a set of application developers.” In Fall’ 99, when the decision to use XOL was
made, XOL was considered to be an emerging standard for exchange and publication of
ontologies. Since, then other ontology representation and exchange standards such as
RDF and DAML+OIL have emerged and we plan to support these standards in the near
future. The XOL DTD used by Ontology Builder has been modified to support
internationalization, metaclass, uses, and facet definitions, which are not part of the
original DTD.

5 Ontology Server

Ontology Server is a scalable, high-performance server and is a critical component for e-
commerce applications that require ontologies to drive their services. It provides a very
scalable, available, reliable, and high-performance solution. Ontology Server uses
exactly the same architecture and representation as Ontology Builder and provides XML
and Java RMI interfaces for access to the ontological data. It is optimized for read-only
access, which facilitates the use of data-caching mechanisms to enhance performance,

which is critical for e-commerce applications. Ontology Server defines its own
interfaces, which are simpler and more suitable for e-commerce applications than the
general OKBC interface.

6 Usage & Performance

Ontology Builder was released internally for use by VerticalNet ontologists and domain
experts in April 2000, following a beta release in February 2000. The server - a Sun
Ultra 1/60, 1 Gigabyte of RAM, with Oracle 8.0.4 - is hosted out of Palo Alto and
accessed mainly from Horsham, Pennsylvania but it is also accessed from several other
locations. Over the past year 84 different users have created 974 ontologies on the
server. Concurrent usage peaked at about 20 users using the system at one time. The
current database has over 5 million records, consisting of 650,000 classes, 480,000 slots,
680,000 frame-slot relations, 220,000 frame-slot-facet relations, 650,000 parent-child
relations and 1,100,000 meta-class relations.
 Ontology Builder and Ontology Server both use the same architecture and back-end
services. However, Ontology Server is optimized for read-only access to the ontological
data and gives better performance than Ontology Builder for read operations. Figure 6,
shows the performance graph for read operations for Ontology Server. 25 to 1000 clients
were simulated accessing 100 different frames, each frame being accessed by each client
100 times. The performance tests were done on a Windows 2000 Pentium III (800 mHz)
machine with 512 megabytes of RAM, using SQLServer 2000 default configuration
without any tuning. Multiple clients were simulated using multiple threads on a
Windows 2000 Pentium III (800 mHz) machine. The performance data is given for
average response time - the time experienced by a client to retrieve a frame, including
server processing time, networking delay, lookup and Java serialization/deserialization
and for overall requests per second – the number of frame accesses per second or the
server throughput.

Figure 6: Performance graph for Ontology Server

Ontology Server Performance

0

50

100

150

200

0 200 400 600 800 1000
Number of Clients

O
ve

ra
ll

R
eq

ue
st

s
Pe

r
Se

co
nd

0

2

4

6

8

10

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s
)

Requests Per Second
Avg. Resp. Time (s)

 The graph shows that as the number of clients increases, the throughput remains
almost the same but the average response time increases, as now clients have to wait for
previous requests from other clients to complete. The average response time for 200
users is about 2 seconds, but as the number of users increases the response time gets
much longer, which may not be acceptable. To allow a more scalable solution multiple
servers can be clustered together to handle thousands of users concurrently with a
reasonable response time. The choice of application server can also significantly impact
the response time and the server throughput as some application servers provide better
performance and scalability than others. The choice of database and fine-tuning of the
database can also increase performance and scalability.
 Excluding the networking, serialization and lookup time, Ontology Server’s actual
processing time is only 1-3 milliseconds and does not vary significantly with the number
of clients, once the frame has been initially loaded from the database. The initial loading
time is about 20–250 milliseconds for each frame, depending on the number of slots,
facets, class, parents, children and metaclass relations to be retrieved. Once retrieved, the
application server caches the frame and subsequent requests to retrieve that frame take
only 1-3 milliseconds regardless of the client requesting the frame. The number of
frames to be cached can be specified as a parameter. Frames not being accessed for a
while are cached out and replaced with the newly requested frames as the caching limit is
reached. Since, all of our tables use primary keys, the size of the database and tables
does not significantly increase the initial loading time of the frame. Figure 7, shows the
access time in milliseconds for retrieving a bare frame (with no relational information)
from the frame table with different sizes.

Num. Of Rows Min. Time Max. Time Avg. Time Iterations

1000 3.12 14.45 7.2 200
10,000 3.84 17.12 7.75 200
100,000 3.23 15.78 9.35 200

1,000,000 4.52 19.35 11.85 200
Figure 7: Access time for retrieving from database table with different sizes

 Ontology Builder does not use caching for retrieving ontological data, but uses lazy
loading to retrieve information as needed. Each piece of information is retrieved from
the database every time it is requested. For the same machine configuration as described
above, the average response time to retrieve a simple frame with parents, children,
metaclasses and slots (without slot values and frame-slot-facets) is about 50 milliseconds,
which translates into 20 read transactions per second. The average time to create a
simple frame in Ontology Builder is about 35 milliseconds, which translates into 30 write
transactions per second. In practice this level of performance for Ontology Builder has
proved to be acceptable, as the ontology development and maintenance is not a
performance intensive process. Clustering multiple servers, choice of application server
and tuning the database can further improve Ontology Builder’s performance.

7 Discussion

Ontologies are becoming much more common as a core component of e-commerce
applications. Industrial strength solutions are needed and, in fact, critical for the success
and longevity of these applications. We have presented two Vertical Net products:
Ontology Builder and Ontology Server. We believe these products bring together the
best knowledge management and ontology practices and the best enterprise architectures
to provide industrial-strength solutions for ontology creation, maintenance, and
deployment.
 When evaluated against our initial product requirements, Ontology Builder and
Ontology Server meet or surpass most of the requirements. Figure 8, shows this
evaluation and compares Ontology Builder with the ontology environments compared in
Figure 1. Even though we have provided reasonable solutions to most requirements,
designated by a 0, we believe there is still considerable room for improvement and plan
to continue to enhance functionality in these particular areas.

 Scalable

Available
Reliable

Ease of
Use

Knowledge
Representation

Multi User
Collaboration

Security Diff
&
Merge

Internationaliza
tion

Versioning

Ontolingua/
Chimaera

- - + 0 - + - -

Protégé/
PROMPT

- 0 + - - + - -

OntoWeb
Tadzebao

- 0 + + - - - -

OntoSaurus/
Loom

- - + 0 - - - -

Ontology
Builder

+ 0 0 0 0 0 + -

Figure 8: Comparison of Ontology Builder with other Ontology Environments

 We believe we have delivered a robust solution for our most critical requirements –
scalability, availability, reliability and performance. By using an enterprise architecture
(J2EE) and an enterprise RDBMS as the back end storage, we have provided an
enterprise-class scalable, reliable, available, and high-performance ontology management
solution.
 The Ontology Builder client provides an easy-to-use interface for ontologists, domain
experts, and business analysts. Though, we have not done formal usability studies, many
domain experts and analysts have been able to use the tool productively, with a minimum
of training. However, we believe, there is always room for improvement in user-interface
design and usability and we plan additional work on usability in response to user studies
and needs analysis.
 Our knowledge model is based on the OKBC knowledge model and provides
flexibility and extensibility for incorporating new features and existing knowledge
models. However, Ontology Builder does not support axioms yet and does not include a
full reasoning component. While we do support internal consistency checking and
propagation of implicit information, we do not provide an OKBC interface and thus do
not support full OKBC compliance. We plan to extend our knowledge model to support
axiomatic reasoning and also plan to implement an OKBC interface. Our current

import/export format is XOL, future plans include support for other common formats
such as RDF and DAML+OIL.
 We have provided a multi-user collaborative environment to facilitate the ontology
building, sharing, and maintenance process. Collaborators can hold discussions and see
changes committed by other users. The collaborative environment could be further
improved by providing optimistic locking (where a frame is not allowed to be edited,
only when it is being updated) instead of pessimistic locking. We are also investigating a
more complete conferencing and whiteboarding solution, perhaps by integrating a third
party tool like Microsoft NetMeeting
(http://www.microsoft.com/windows/netmeeting/default.asp) or Netscape Conference
(http://home.netscape.com/communicator/conference/v4.0).
 Our role-based security model provides data security, data integrity, user
authentication and multiple levels of user access. A fine-grained model in which a set of
permissions could be assigned to a user of a particular ontology has also been designed.
 The difference and merging engine currently uses a simple algorithm. Future plans
call for a more sophisticated difference and merging algorithm
 Ontology Builder is fully internationalized and can be used in multiple languages and
ontologies can be created and displayed in multiple locales.
 Ontology Builder currently does not provide any versioning support. Versioning of
ontologies is needed so that changes from one version to another can be tracked and
managed and so that applications can determine what specific version of an ontology is
being accessed. We hope to provide fine-grain versioning control functionality in the
future.

8 Acknowledgements

We like to thank the many people who have contributed to these products - Mark Yang
for design, Howard Liu, Don McKay, Keith Thurston, Lisa Colvin, Patrick Cassidy, Mike
Malloy, Leo Orbst, Eric Elias, Craig Schlenoff, Eric Peterson for their use of the products
and feedback, Joel Nava, Faisal Aslam, Hammad Sophie, Doug Cheseney, Nigel McKay
for implementation and Hugo Daley,Adam Cheyer for their support.

9 References

[1] Neil F. Abernethy, Russ B. Altman, “SOPHIA: Providing basic knowledge services

with a common DBMS”, Proceedings of the 5th KRDB Workshop, Seattle, WA,
1998.

[2] Dan Brickley & R.V.Guha, "Resource Description Framework (RDF) Schema

Specification 1.0", World Wide Web Consortium, Cambridge, MA, 1999

[3] Vinay Chaudhri, Adam Farquhar, Richard Fikes, Peter Karp, James Rice, “Open

Knowledge Base Connectivity 2.0”, Knowledge Systems Laboratory, 1998.

http://www.microsoft.com/windows/netmeeting/default.asp
http://home.netscape.com/communicator/conference/v4.0

[4] J. Domingue, “Tadzebao and WebOnto: Discussing, Browsing, and Editing
Ontologies on theWeb”, Proceedings of the Eleventh Workshop on Knowledge
Acquisition, Modeling and Management, Banff, Canada, 1998.

[5] J. Duineveld, R. Stoter, M. R. Weiden, B. Kenepa & V. R. Benjamins,

“WonderTools? A comparative study of ontological engineering tools”,
Proceedings of the Twelfth Workshop on Knowledge Acquisition, Modeling and
Management, Banff, Canada, 1999.

[6] Adam Farquhar, Richard Fikes, James Rice, “The Ontolingua Server: a Tool for

Collaboartive Ontology Construction”, International Journal of Human-Computer
Studies, 46, 707-727, 1997.

[7] Adam Farquhar, Richard Fikes, James Rice, “Tools for assembling modular

ontologies in Ontolingua”, Knowledge Systems Laboratory, Stanford University,
April, 1997.

[8] Dieter Fensel, Ian Horrocks, Frank van Harmelen, Deborah L. McGuinness, and

Peter F. Patel-Schneider. ``OIL: An Ontology Infrastructure for the Semantic Web
''. In IEEE Intelligent Systems, Vol. 16, No. 2, March/April 2001.

[9] Michael Genesereth and Richard Fikes, “Knowledge Interchange Format, Version

3.0 Reference Manual”, Knowledge System Laboratory, Stanford University, 1992.

[10] W. E. Grosso, H. Eriksson, R. W. Fergerson, J. H. Gennari, S. W. Tu, & M. A.

Musen, “Knowledge Modeling at the Millennium (The Design and Evolution of
Protege-2000)”. Twelfth Banff Workshop on Knowledge Acquisition, Modeling, and
Management. Banff, Alberta, 1999.

[11] James Hendler and Deborah L. McGuinness, ``The DARPA Agent Markup

Language''. IEEE Intelligent Systems, Vol. 15, No. 6, November/December 2000,
pages 67-73.

[12] ISX Corporation (1991). "LOOM Users Guide, Version 1.4".

[13] Peter D. Karp, "The design space of frame knowledge representation systems",

Technical Report 520, SRI International AI Center, 1992.

[14] Peter D. Karp, Vinay K. Chaudhri, and Jerome F. Thomere, "XOL: An XML-Based

Ontology Exchange Language," Technical Note 559, AI Center, SRI International,
1999.

[15] Ora Lassila & Ralph Swick, "Resource Description Framework (RDF) Model and

Syntax Specification", W3C Recommendation 22 February 1999, World Wide Web
Consortium, Cambridge (MA); available on-line as http://www.w3.org/TR/REC-
rdf-syntax/.

http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/REC-rdf-syntax/

[16] Deborah L. McGuinness, Richard Fikes, James Rice, and Steve Wilder, “An

Environment for Merging and Testing Large Ontologies. Proceedings of the
Seventh International Conference on Principles of Knowledge Representation and
Reasoning, Breckenridge, Colorado, April 2000.

[17] Deborah L. McGuinness, Richard Fikes, James Rice, and Steve Wilder, “The

Chimaera Ontology Environment”, Proceedings of the The Seventeenth National
Conference on Artificial Intelligence, Austin, Texas, July 2000.

[18] Deborah L. McGuinness ``Ontologies and Online Commerce''. In IEEE Intelligent

Systems, Vol. 16, No. 1, January/February 2001, pages 8-14.

[19] Deborah L. McGuinness. “Ontologies Come of Age”. To appear in D. Fensel, J.

Hendler, H. Lieberman, and W. Wahlster (editors). Semantic Web Technology,
MIT Press, Boston, Mass., 2001.

[20] Natalya F. Noy & Mark A. Musen, “SMART: Automated Support for Ontology

Merging and Alignment”, Proceedings of the Twelfth Workshop on Knowledge
Acquisition, Modeling and Management, Banff, Canada, July 1999.

[21] Natalya F. Noy & Mark A. Musen, “PROMPT: Algorithm and Tool for Automated

Ontology Merging and Alignment”, Seventeenth National Conference on Artificial
Intelligence, Austin, Texas, 2000.

[22] Protégé Users Guide,

http://www.smi.stanford.edu/projects/protege/doc/users_guide/index.html

[23] Kilian Stoffel, Merwyn Taylor, James Hendler, “Efficient Management of Very

Large Ontologies”, Proceedings of American Association for Artificial Intelligence
Conference, (AAAI-97), AAAI/MIT Press 1997.

http://www.smi.stanford.edu/projects/protege/doc/users_guide/index.html

	Introduction
	Requirements
	Existing Ontology Environments
	Ontology Builder
	Architecture
	Knowledge Representation
	Ontology Inclusion (Uses Relationship)
	Data Storage and Knowledge-Relational Mapping
	Multi User Collaboration & Locking
	Verification
	Difference & Merging
	Role Based Security
	Internationalization
	Import & Export

	Ontology Server
	Usage & Performance
	
	
	Iterations

	Discussion
	Acknowledgements
	References

