

Kinds, roles, attributions

How many rock kinds are there?

[From Brachman, R., R. F ikes, et al. 1983. "Krypton: A Functional Approach to Knowledge Representation", *IEEE Computer*]

Master course on ontological analysis and conceptual modelling, Messina, spring 2008

The answer

- According to Brachman & Fikes 83:
 - It's a dangerous question, only "safe" queries about analytical relationships between terms should be asked
- In a previous paper by Brachman and Levesque on *terminological competence in knowledge representation* [AAAI 82]:
 - "an *enhancement mode transistor* (which is a *kind* of transistor) should be understood as different from a *pass transistor* (which is a *role* a transistor plays in a larger circuit)"
- These issues have been simply *given up* while striving for logical simplification and computational tractability
- The OntoClean methodology, based on formal ontological analysis, allows us to conclude: *there are 3 kinds of rocks* (appearing in the figure)

Master course on ontological analysis and conceptual modelling, Messina, spring 2008

From the logical level to the ontological level

- Logical level (no structure, no constrained meaning)
 - $\exists x (Apple(x) \land Red(x))$
- Epistemological level (structure, no constrained meaning):
 - $\exists x:apple \operatorname{Red}(x)$ (many-sorted logics)
 - ∃x:red Apple(x)
 - a is a Apple with Color=red (description logics)
 - a is a Red with Shape=apple
- Ontological level (structure, constrained meaning)
 - Some structuring choices are excluded because of ontological constraints: Apple carries an identiy condition, Red does not.

Ontology helps building "meaningful" representations

The source of all problems: (slightly) different meanings for words

- A (simple-minded) painter may intepret the words "Apple" and "Red" in a completely different way:
 - Three different reds on my palette: Orange, Appple, Cherry
- So an expression like $\exists x: red$ Apple(x) may mean that there is an "Apple" red.
- Two different ontological assumptions behind the Red predicate:
 - adjectival interpretation: being a red thing doesn't carry an identity criterion (uncountable)
 - nominal interpretation: *being a red color* does carry an identity criterion (countable)

Formal ontological distinctions help making intended meaning explicit

Ontological analysis can be defined as the process of *eliciting and discovering relevant distinctions* and relationships bound to the very nature of the entities involved in a certain domain, *for the practical purpose of disambiguating terms* having different interpretations in different contexts.

Master course on ontological analysis and conceptual modelling, Messina, spring 2008

The Ontological Level (Guarino 94)

Level	Primitives	Interpretation	Main feature
Logical	Predicates, functions	Arbitrary	Formalization
Epistemological	Structuring relations	Arbitrary	Structure
Ontological	Ontological	Constrained	Meaning
Sittingicui	relations	(meaning postulate s)	i i i i i i i i i i i i i i i i i i i
Conceptual	relations Conceptual relations	(meaning postulate s) Subjective	Conceptualization

Terminological competence - kinds of relations

• Woods' "What's in a link?" (1975):

JOHN HEIGHT: 6 FEET KISSED: MARY

- "no longer do the link names stand for attributes of a node, but rather arbitrary relations between the node and other nodes"
- different notations should be used

Structured concepts: a broader picture

JOHN HEIGHT: 6 FEET RIGHT-LEG: BROKEN MOTHER: JANE KISSED: MARY JOB: RESEARCHER

intrinsic quality part role external relation relational quality

We need different primitives to express *different structuring relationships* among concepts We need to represent *non-structuring relationships* separately Current description logics tend to collapse **EVERYTHING**!

Ontologies and ontological analysis: an introduction - FOIS 2008, Saarbrücken, October 31st, 2008

The semantic web architecture [Tim Berners Lee 2000]

SEMINÁRIO DE PESQUISA EM ONTOLOGIA NO BRASIL - UFF - IACS - Departamento de Ciência da Informação - Niterói, 11-12/8/200

11

The formal tools of ontological analysis

- Theory of Essence and Identity
- Theory of Parts (Mereology)
- Theory of Unity and Plurality
- Theory of Dependence
- Theory of Composition and Constitution
- Theory of Properties and Qualities

The basis for a common ontology vocabulary

Idea of Chris Welty, IBM Watson Research Centre, while visiting our lab in 2000

Ontologies and ontological analysis: an introduction - FOIS 2008, Saarbrücken, October 31st, 2008

Ontology-driven information systems

Ontology-Driven Information Systems

- Every IS *has* its own ontology (either implicit or explicit)
- The ODIS perspective: *explicit* ontologies play a *central* role, driving *all* aspects and components of an IS
- Two (main) dimensions to assess the role of an explicit ontology:
 - temporal dimension: development time vs. run time
 - structural dimension: impact on the various IS components:
 - database component
 - application program
 - user interface

Temporal dimension: *development time*

- Two scenarios:
 - A pre-existing ontology library containing domain and task ontologies as "main building blocks" to be adapted and rused
 - standard IS: the ontology content is *embedded* in the standard components
 - ODIS: an *application ontology* is built by specializing domain and task ontologies taken from the library
 - Only an *upper-level ontology* available: not building blocks, but *conceptual* tools (analogous to other CASE tools)
- Two kinds of development:
 - IS engineering
 - IS *re-engineering*

Temporal dimension: *run time*

- Ontology-*aware* IS: the IS just uses the ontology for some specific purpose
- Ontology-*driven* IS: the ontology is a *central componen*t of the IS, cooperating at run time towards its "higher" overall goal
- Important application: *inter-agent communication*

Structural dimension: the database component

- Development time:
 - support to *requirement analysis and conceptual modelling* (integrated with lexical resources like WordNet)
 - development of a *global conceptual schema* (DB integration)
- Run time:
 - mediation-based approach to *information integration*
 - intensional queries

Structural dimension: the user-interface component

- Development time:
 - Generation of *form-based interfaces* (constraints checking)
- Run time:
 - Support quering and browsing the ontology itself:
 - better understanding of the vocabulary
 - queries at the desired level of specificity
 - Vocabulary detaching:
 - user free to adopt his own NL terms (mapped after disambiguation to the IS vocabulary with the help of the ontology)

Structural dimension:

the application program component

- Development time:
 - Generation of the static part of a program (type structure)
 - Support to OO design
- Run time:
 - Explicit account of the *ontological commitment* of an application program
 - Increase of the *transparency* of application software

